×

Group consensus via pinning control for a class of heterogeneous multi-agent systems with input constraints. (English) Zbl 1478.93633

Summary: This paper studies group consensus for a class of heterogeneous multi-agent systems (HMASs), where the dynamics of agents are described by single and double integrators. First, under the case that all the agents’ control inputs are bounded and the second-order agents’ velocity information cannot be obtained, we design controllers with a grouping and pinning scheme by introducing an auxiliary function. With the help of Lyapunov theory, it is proved that an HMAS with some pinning agents can achieve group consensus asymptotically under an undirected connected topology and the final states of all agents can converge to the desired consensus values. Furthermore, we investigate group consensus for an HMAS under multiple communication constraints, where the dynamics of the second-order agents are represented by linear and Euler-Lagrange (EL) nonlinear dynamics. Two control protocols and group consensus criteria are also provided to guarantee that the HMAS with or without uncertain parameters can reach group consensus. Finally, two simulation examples illustrate the obtained results.

MSC:

93D50 Consensus
93A16 Multi-agent systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cao, Y. C.; Ren, W., Multi-vehicle coordination for double-integrator dynamics under fixed undirected/directed interaction in a sampled-data setting, Int. J. Robust Nonlinear Control, 20, 9, 987-1000 (2010) · Zbl 1298.93225
[2] Chen, W. S.; Li, X. B.; Ren, W.; Wen, C. Y., Adaptive consensus of multi-agent systems with unknown identical control directions based on a novel Nussbaum-type function, IEEE Trans. Autom. Control, 59, 7, 1887-1892 (2013) · Zbl 1360.93068
[3] Dong, X. W.; Hu, G. Q., Time-varying formation control for general linear multi-agent systems with switching directed topologies, Automatica, 73, 47-55 (2016) · Zbl 1372.93012
[4] Feng, Y. Z.; Xu, S. Y.; Lewis, F. L.; Zhang, B. Y., Consensus of heterogeneous first- and second-order multi-agent systems with directed communication topologies, Int. J. Robust Nonlinear Control, 25, 3, 362-375 (2015) · Zbl 1328.93021
[5] Feng, Y. Z.; Zheng, W. X., Group consensus control for discrete-time heterogeneous first- and second-order multiagent systems, IET Control Theory Appl., 12, 6, 753-760 (2018)
[6] Geng, H.; Chen, Z. Q.; Liu, Z. X.; Zhang, Q., Consensus of a heterogeneous multi-agent system with input saturation, Neurocomputing, 166, 382-388 (2015)
[7] Guo, G.; Wang, L. Y., Control over medium-constrained vehicular networks with fading channels and random access protocol: a networked systems approach, IEEE Trans. Veh. Technol., 64, 8, 3347-3358 (2015)
[8] Guo, G.; Wang, Q., Fuel-efficient en route speed planning and tracking control of truck platoons, IEEE Trans. Intell. Transp. Syst., 20, 8, 3091-3103 (2019)
[9] Guo, G.; Li, D. D., Adaptive sliding mode control of vehicular platoons with prescribed tracking performance, IEEE Trans. Veh. Technol., 68, 8, 7511-7520 (2019)
[10] He, W. L.; Chen, G. R.; Han, Q. L.; Qian, F., Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control, Inf. Sci., 380, 145-158 (2017) · Zbl 1429.68027
[11] Hu, H. X.; Yu, W. W.; Xuan, Q.; Zhang, C. G.; Xie, G. M., Group consensus for heterogeneous multi-agent systems with parametric uncertainties, Neurocomputing, 142, 383-392 (2014)
[12] Hu, H. X.; Liu, A. D.; Xuan, Q.; Yu, L.; Xie, G. M., Second-order consensus of multi-agent systems in the cooperation-competition network with switching topologies: a time-delayed impulsive control approach, Syst. Control Lett., 104, 12, 1125-1135 (2013) · Zbl 1282.93017
[13] Huang, J.; Wen, G. G.; Peng, Z. X.; Chu, X.; Dong, Y. W., Group-consensus with reference states for heterogeneous multi-agent systems via pinning control, Int. J. Control Autom. Syst., 17, 5, 1096-1106 (2019)
[14] Ji, L. H.; Yu, X. G.; Li, C. J., Group consensus for heterogeneous multiagent systems in the competition networks with input time delays, IEEE Trans. Syst. Man Cybern. Syst. (2018)
[15] Kelly, R.; Santibanez, V.; Loria, A., Control of Robot Manipulators in Joint Space (2005), Springer: Springer London
[16] Li, H. Q.; Liao, X. F.; Huang, T. W.; Wang, W.; Han, Q.; Dong, T., Algebraic criteria for second-order global consensus in multi-agent networks with intrinsic nonlinear dynamics and directed topologies, Inf. Sci., 259, 25-35 (2014) · Zbl 1332.34094
[17] Li, L.; Basile, F.; Li, Z. W., An approach to improve permissiveness of supervisors for GMECs in time Petri net systems, IEEE Trans. Autom. Control, 65, 1, 237-251 (2020) · Zbl 1483.93391
[18] Li, X.; Li, C. C.; Yang, Y. K., Heterogeneous linear multi-agent consensus with nonconvex input constraints and switching graphs, Inf. Sci., 501, 397-405 (2019) · Zbl 1458.93224
[19] X.B. Li, E.S. Abouel Nasr, A. Mohammed El-Tamimi, Z.W. Li, Adaptive consensus of two coupled heterogeneous networked systems with bidirectional actions, IEEE Access, 8(2020)35832-35841.
[20] Li, Z. K.; Ren, W.; Liu, X. D.; Fu, M. Y., Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders, Int. J. Robust Nonlinear Control, 23, 5, 534-547 (2013) · Zbl 1284.93019
[21] Liu, B.; Wang, X. L.; Su, H. S.; Gao, Y. P.; Wang, L., Adaptive second-order consensus of multi-agent systems with heterogeneous nonlinear dynamics and time-varying delays, Neurocomputing, 118, 289-300 (2013)
[22] Liu, K. E.; Ji, Z. J.; Xie, G. M.; Wang, L., Consensus for heterogeneous multi-agent systems under fixed and switching topologies, J. Franklin. Inst., 352, 9, 3670-3683 (2015) · Zbl 1395.93056
[23] Liu, Y.; Min, H. B.; Wang, S. C.; Liu, Z. G.; Liao, S. Y., Distributed consensus of a class of networked heterogeneous multi-agent systems, J. Franklin. Inst., 351, 3, 1700-1716 (2014) · Zbl 1395.93059
[24] Liu, Y. Y.; Cai, K.; Li, Z. W., On scalable supervisory control of multi-agent discreteevent systems, Automatica, 108 (2019)
[25] Miao, G. Y.; Cao, J. D.; Alsaedi, A.; Alsaadi, F. E., Event-triggered containment control for multi-agent systems with constant time delays, J. Franklin. Inst., 354, 15, 6956-6977 (2017) · Zbl 1373.93027
[26] Nedic, A.; Olshevsky, A.; Ozdaglar, A.; Tsitsiklis, J. N., On distributed averaging algorithms and quantization effects, IEEE Trans. Autom. Control, 54, 11, 2506-2517 (2009) · Zbl 1367.93405
[27] Oh, K. K.; Park, M. C.; Ahn, H. S., A survey of multi-agent formation control, Automatica, 53, 424-440 (2015) · Zbl 1371.93015
[28] Peng, Z. H.; Wang, D.; Zhang, H. W.; Sun, G., Distributed neural network control for adaptive synchronization of uncertain dynamical multiagent systems, IEEE Trans. Neural Netw. Learn. Syst., 28, 8, 1508-1519 (2014)
[29] Peng, Z. H.; Wang, D.; Wang, J., Predictor-based neural dynamic surface control for uncertain nonlinear systems in strict-feedback form, IEEE Trans. Neural Netw. Learn. Syst. (2016)
[30] Peng, Z. H.; Wang, J.; Han, Q. L., Path-following control of autonomous underwater vehicles subject to velocity and input constraints via neurodynamic optimization, IEEE Trans. Ind. Electron., 66, 11, 8724-8732 (2019)
[31] Peng, Z. N.; Hu, J. P.; Shi, K. B.; Luo, R.; Huang, R.; Ghosh, B. K.; Huang, J. K., A novel optimal bipartite consensus control scheme for unknown multi-agent systems via model-free reinforcement learning, Appl. Math. Comput., 369, Article 124821 pp. (2020) · Zbl 1433.93008
[32] Ren, W.; Beard, R., Distributed Consensus in Multi-vehicle Cooperative Control (2008), Springer-Verlag: Springer-Verlag London · Zbl 1144.93002
[33] Shi, K. B.; Liu, X. Z.; Tang, Y. Y.; Zhu, H.; Zhong, S. M., Some novel approaches on state estimation of delayed neural networks, Inf. Sci., 372, 313-331 (2016) · Zbl 1429.93142
[34] Shi, K. B.; Wang, J.; Tang, Y. Y.; Zhong, S. M., Reliable asynchronous sampled-data filtering of TCS fuzzy uncertain delayed neural networks with stochastic switched topologies, IEEE Trans. Fuzzy Syst. (2018)
[35] Shi, L.; Shao, J.; Cao, M.; Xia, H., Asynchronous group consensus for discrete-time heterogeneous multi-agent systems under dynamically changing interaction topologies, Inf. Sci., 463, 282-293 (2018) · Zbl 1448.93303
[36] Wen, G. G.; Huang, J.; Wang, C. Y.; Chen, Z.; Peng, Z. X., Group consensus control for heterogeneous multi-agent systems with fixed and switching topologies, Int. J. Control, 89, 2, 259-269 (2016) · Zbl 1332.93034
[37] Wen, G. G.; Huang, J.; Peng, Z. X.; Yu, Y. J., On pinning group consensus for heterogeneous multi-agent system with input saturation, Neurocomputing, 207, 623-629 (2016)
[38] Wen, G. G.; Yu, Y. G.; Peng, Z. X.; Wang, H., Dynamical group consensus of heterogeneous multi-agent systems with input time delays, Neurocomputing, 175, 278-286 (2016)
[39] Wen, S. X.; Guo, G., Sampled-data control for connected vehicles with Markovian switching topologies and communication delay, IEEE Trans. Intell. Transp. Syst. (2019)
[40] Yang, L.; Li, Z. W.; Giua, A., Containment of rumor spread in complex social networks, Inf. Sci., 506, 113-130 (2020)
[41] Zan, X.; Wu, Z. P.; Guo, C.; Yu, Z. H., A Pareto-based genetic algorithm for multiobjective scheduling of automated manufacturing systems, Adv. Mech. Eng., 12, 1, 1-15 (2020)
[42] Zhao, H. Y.; Fei, S. M., Distributed consensus for discrete-time heterogeneous multi-agent systems, Int. J. Control, 91, 6, 1376-1384 (2018) · Zbl 1390.93098
[43] Zheng, Y. S.; Wang, L., Consensus of heterogeneous multi-agent systems without velocity measurements, Int. J. Control, 85, 7, 906-914 (2012) · Zbl 1282.93031
[44] Zheng, Y. S.; Wang, L., A novel group consensus protocol for heterogeneous multi-agent systems, Int. J. Control, 88, 11, 2347-2353 (2015) · Zbl 1334.93025
[45] Zheng, Y. S.; Ma, J. Y.; Wang, L., Consensus of hybrid multi-agent systems, IEEE Trans. Neural Netw. Learn. Syst., 29, 4, 1359-1365 (2018)
[46] Zhou, B.; Liao, X. F., Leader-following second-order consensus in multi-agent systems with sampled data via pinning control, Nonlinear Dyn., 78, 1, 555-569 (2014) · Zbl 1314.90028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.