×

Particle filtering for a class of cyber-physical systems under round-robin protocol subject to randomly occurring deception attacks. (English) Zbl 1478.93695

Summary: In this paper, the particle filtering problem is studied for a class of general nonlinear cyber-physical systems with non-Gaussian noises under round-robin protocol (RRP) subject to the randomly occurring deception attacks. In order to prevent the data from collisions and alleviate the communication overhead for the shared network with limited resources, the RRP is introduced in the sensor-to-filter channel to schedule the multiple sensors with a predefined transmission order. Under the RRP, only one sensor can be granted the access to the shared channel for measurement transmission at each time instant. A Bernoulli-distributed stochastic variable is utilized to describe the characteristic of random occurrence of deception attacks initiated by the adversaries. A RRP-based particle filtering algorithm is developed by establishing a modified likelihood function, where the statistical property of the randomly occurring deception attacks is exploited and the RRP-induced effect on the filter design is reflected. Finally, an illustrative example regarding the target tracking problem is provided to verify the feasibility and effectiveness of the developed particle filtering scheme.

MSC:

93E11 Filtering in stochastic control theory
93B70 Networked control
93C83 Control/observation systems involving computers (process control, etc.)
93C10 Nonlinear systems in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arasaratnam, I.; Haykin, S., Cubature Kalman filters, IEEE Trans. Autom. Control, 54, 6, 1254-1269 (2009) · Zbl 1367.93637
[2] Arulampalam, M. S.; Maskell, S.; Gordon, N.; Clapp, T., A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. Signal Process., 50, 2, 174-188 (2002)
[3] Befekadu, G. K.; Gupta, V.; Antsaklis, P. J., Risk-sensitive control under Markov modulated denial-of-service (DoS) attack strategies, IEEE Trans. Autom. Control, 60, 12, 3299-3304 (2015) · Zbl 1360.93766
[4] Date, P.; Ponomareva, K., Linear and non-linear filtering in mathematical finance: a review, IMA J. Manage. Math., 22, 3, 195-211 (2011) · Zbl 1217.91205
[5] Dias, S. S.; Bruno, M. G.S., Cooperative target tracking using decentralized particle filtering and RSS sensors, IEEE Trans. Signal Process., 61, 14, 3632-3646 (2013) · Zbl 1393.94552
[6] Ding, D.; Han, Q.-L.; Xiang, Y.; Ge, X.; Zhang, X.-M., A survey on security control and attack detection for industrial cyber-physical systems, Neurocomputing, 275, 1674-1683 (2018)
[7] Farina, A.; Ristic, B.; Benvenuti, D., Tracking a ballistic target: comparison of several nonlinear filters, IEEE Trans. Aerosp. Electron. Syst., 38, 3, 854-867 (2002)
[8] X. Ge, Q.-L. Han, X.-M. Zhang, D. Ding, F. Yang, Resilient and secure remote monitoring for a class of cyber-physical systems against attacks, Inf. Sci. 512 (2020) 1592-1605. https://doi.org/10.1016/j.ins.2019.10.057. · Zbl 1461.93183
[9] He, W.; Gao, X.; Zhong, W.; Qian, F., Secure impulsive synchronization control of multi-agent systems under deception attacks, Inf. Sci., 459, 354-368 (2018) · Zbl 1448.93248
[10] W. He, T. Luo, Y. Tang, W. Du, Y.-C. Tian, F. Qian, Secure communication based on quantized synchronization of chaotic neural networks under an event-triggered strategy, IEEE Trans. Neural Netw. Learn Syst. in press. https://doi.org/10.1109/TNNLS.2019.2943548.
[11] W. He, F. Qian, Q.-L. Han, G. Chen, Almost sure stability of nonlinear systems under random and impulsive sequential attacks, IEEE Trans. Autom. Control in press. https://doi.org/10.1109/TAC.2020.2972220. · Zbl 07256490
[12] Hou, N.; Wang, Z.; Ho, D. W.C.; Dong, H., Robust partial-nodes-based state estimation for complex networks under deception attacks, IEEE Trans. Cybern., 50, 6, 2793-2802 (Jun. 2020)
[13] Hu, J.; Wang, Z.; Gao, H.; Stergioulas, L. K., Extended Kalman filtering with stochastic nonlinearities and multiple missing measurements, Automatica, 48, 9, 2007-2015 (2012) · Zbl 1257.93099
[14] Jafarzadeh, S.; Lascu, C.; Fadali, M. S., Square root unscented Kalman filters for state estimation of induction motor drives, IEEE Trans. Ind. Appl., 49, 1, 92-99 (2013)
[15] Jia, B.; Xin, M.; Cheng, Y., Sparse-grid quadrature nonlinear filtering, Automatica, 48, 2, 327-341 (2012) · Zbl 1260.93161
[16] Julier, S.; Uhlmann, J.; Durrant-Whyte, H. F., A new method for the nonlinear transformation of means and covariances in filters and estimators, IEEE Trans. Autom. Control, 45, 3, 477-482 (2000) · Zbl 0973.93053
[17] Kluge, S.; Reif, K.; Brokate, M., Stochastic stability of the extended Kalman filter with intermittent observations, IEEE Trans. Autom. Control, 55, 2, 514-518 (2010) · Zbl 1368.93717
[18] Lee, D.-J.; Alfriend, K. T., Sigma point filtering for sequential orbit estimation and prediction, J. Spacecr. Rockets, 44, 2, 388-398 (2007)
[19] Li, W.; Jia, Y.; Du, J., State estimation for stochastic complex networks with switching topology, IEEE Trans. Autom. Control, 62, 12, 6377-6384 (2017) · Zbl 1390.93761
[20] Li, W.; Wang, Z.; Liu, Q.; Guo, L., An information aware event-triggered scheme for particle filter based remote state estimation, Automatica, 103, 151-158 (2019) · Zbl 1415.93251
[21] Li, W.; Wang, Z.; Yuan, Y.; Guo, L., Particle filtering with applications in networked systems: a survey, Complex Intell. Syst., 2, 4, 293-315 (2016)
[22] W. Li, Z. Wang, Y. Yuan, L. Guo, Two-stage particle filtering for non-Gaussian state estimation with fading measurements, Automatica 115 (2020) art. no. 108882, 12 pages. · Zbl 1436.93139
[23] Q. Liu, Z. Wang, Q.-L. Han, C. Jiang, Quadratic estimation for discrete time-varying non-Gaussian systems with multiplicative noises and quantization effects, Automatica, vol. 113, Art. no. 108714, Mar. 2020. · Zbl 1440.93247
[24] Liu, S.; Wang, Z.; Chen, Y.; Wei, G., Protocol-based unscented Kalman filtering in the presence of stochastic uncertainties, IEEE Trans. Autom. Control, 65, 3, 1303-1309 (2020) · Zbl 07256255
[25] Liu, S.; Wang, Z.; Wei, G.; Li, M., Distributed set-membership filtering for multi-rate systems under the Round-Robin scheduling over sensor networks, IEEE Trans. Cybern., 50, 5, 1910-1920 (2020)
[26] Maíz, C. S.; Molanes-López, E. M.; Míguez, J.; Djurić, P. M., A particle filtering scheme for processing time series corrupted by outliers, IEEE Trans. Signal Process., 60, 9, 4611-4627 (2012) · Zbl 1393.94350
[27] N. Sadeghzadeh-Nokhodberiz, M. Davoodi, N. Meskin, Stochastic event-triggered particle filtering for state estimation, in: Second International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP), Krakow, Poland, 2016, pp. 1-4.
[28] B. Shen, Z. Wang, D. Wang and H. Liu, Distributed state-saturated recursive filtering over sensor networks under Round-Robin protocol, IEEE Trans. Cybern. in press. https://doi.org/10.1109/TCYB.2019.2932460.
[29] Shen, Y.; Wang, Z.; Shen, B.; Alsaadi, F. E.; Alsaadi, F. E., Fusion estimation for multi-rate linear repetitive processes under weighted Try-Once-Discard protocol, Inf. Fusion, 55, 281-291 (2020)
[30] Tanizaki, H., Nonlinear Filters: Estimation and Applications (1996), Springer: Springer Berlin · Zbl 0925.93917
[31] Van der Merwe, R.; Doucet, A.; De Freitas, N.; Wan, E., The unscented particle filter, Adv. Neural Inf. Process. Syst., 13, 584-590 (2001)
[32] Xiao, S.; Han, Q.-L.; Ge, X.; Zhang, Y., Secure distributed finite-time filtering for positive systems over sensor networks under deception attacks, IEEE Trans. Cybern., 50, 3, 1220-1229 (2020)
[33] Xu, D.; Shen, C.; Shen, F., A robust particle filtering algorithm with non-Gaussian measurement noise using Student-t distribution, IEEE Signal Process. Lett., 21, 1, 30-34 (2014)
[34] Xu, L.; Ma, K.; Li, W.; Liu, Y.; Alsaadi, F. E., Particle filtering for networked nonlinear systems subject to random one-step sensor delay and missing measurements, Neurocomputing, 275, 2162-2169 (2018)
[35] Yang, C.; Fang, H.; Shi, B., Particle filter with Markovian packet dropout and time delay, J. Frankl. Inst., 356, 1, 675-696 (2019) · Zbl 1405.93221
[36] Ye, D.; Zhang, T.-Y.; Guo, G., Stochastic coding detection scheme in cyber-physical systems against replay attack, Inf. Sci., 481, 432-444 (2019) · Zbl 1451.94035
[37] Yuan, Y.; Wang, Z.; Zhang, P.; Liu, H., Near-optimal resilient control strategy design for state-saturated networked systems under stochastic communication protocol, IEEE Trans. Cybern., 49, 8, 3155-3167 (2019)
[38] Zhang, Y.; Huang, Y.; Li, N.; Zhao, L., Particle filter with one-step randomly delayed measurements and unknown latency probability, Int. J. Syst. Sci., 47, 1, 209-221 (2016) · Zbl 1333.93246
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.