×

Secure synchronization of stochastic complex networks subject to deception attack with nonidentical nodes and internal disturbance. (English) Zbl 1478.93709

Summary: This paper aims at exploring the mean-square bounded synchronization of clustered stochastic systems under deception attack which is a ubiquitous phenomenon in cyber-physical network. Actually, when controllers in network send controlling signal to physical plants, controller-to-actuator channel may be injected with wrong signal by malicious hackers intending to destroy the system’s performance. To describe attacker’s behavior, some random variables are introduced to describe whether the cluster’s channel is attacked or not in the controlled moment. Meanwhile, it has been proved that pinning impulsive control is effective to offset both stochastic effect and attack effect, where the nodes with bigger error will be chosen to be pinned in impulsive instants. By applying Gronwall-Bellman inequality and Lyapunov method on stochastic network, several kinds of mean-square bounded synchronization criteria based on pinning impulsive strategy are derived in terms of algebraic conditions and some reasonable assumptions. Finally, some numerical simulations are presented to illustrate the effectiveness of the theoretical results in this paper.

MSC:

93E15 Stochastic stability in control theory
93C27 Impulsive control/observation systems
93B70 Networked control
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Barabási, A. L.; Oltvai, Z. N., Network biology: understanding the cell’s function organization, Nat. Rev. Genet., 5, 2, 101-113 (2004)
[2] Mirollo, R.; Strogatz, S., Synchronization of pulse-coupled biological oscillators, SIAM J. Appl. Math., 50, 1645-1662 (1990) · Zbl 0712.92006
[3] Kouomou, Y.; Woafo, P., Cluster synchronization in coupled chaotic semiconductor lasers and application to switching in chaos-secured communication networks, Opt. Commun., 223, 283-293 (2003)
[4] Frank, S.; Giorgio, F.; Fernando, V. R., Economic networks: the new challenges, Science, 325, 422-425 (2009) · Zbl 1226.91057
[5] Orosz, G.; Wilson, R. E.; Stépán, G., Traffic jams: dynamics and control introduction, Philos. Trans. R. Soc. A, 368, 4455-4479 (2010) · Zbl 1202.90075
[6] Yi, C.; Feng, J.; Wang, J.; Xu, C.; Zhao, Y., Synchronization of delayed neural networks with hybrid coupling via partial mixed pinning impulsive control, Appl. Math. Comput., 312, 78-90 (2017) · Zbl 1426.92006
[7] He, W.; Qian, F.; Han, Q. L.; Cao, J., Synchronization error estimation and controller design for delayed Lur’e systems with parameter mismatches, IEEE Trans. Neural Netw. Learn. Syst., 23, 10, 1551-1563 (2012)
[8] Gao, H. J.; Lam, J.; Chen, G. R., New criteria for synchronization stability of general complex dynamical networks with coupling delays, Phys. Lett. A, 360, 2, 263-273 (2007) · Zbl 1236.34069
[9] Guo, W., Lag synchronization of complex networks via pinning control, Nonlinear Anal. RWA, 12, 2579-2585 (2011) · Zbl 1223.93057
[10] Wang, J.; Feng, J.; Chen, X.; Zhao, Y., Cluster synchronization of nonlinearly-coupled complex networks with nonidentical nodes and asymmetrical coupling matrix, Nonlinear Dynam., 67, 1635-1646 (2012) · Zbl 1242.93009
[11] Zhao, Y.; Liu, Y.; Wen, G.; Ren, W.; Chen, G., Edge-based finite-time protocol analysis with final consensus value and settling time estimations, IEEE Trans. Cybern., 50, 1450-1459 (2020)
[12] Wang, X.; Su, H.; Chen, M. Z.; Wang, X., Observer-based robust coordinated control of multiagent systems with input saturation, IEEE Trans. Neural Netw. Learn. Syst., 29, 1933-1946 (2018)
[13] Wang, X.; Su, H.; Wang, X.; Chen, G., Fully distributed event-triggered semiglobal consensus of multi-agent systems with input saturation, IEEE Trans. Ind. Electron., 64, 2055-5064 (2017)
[14] Yi, Chengbo; Feng, Jianwen; Xu, Jingyi Wang Chen; Zhao, Yi, Synchronization of delayed neural networks with hybrid coupling via partial mixed pinning impulsive control, Appl. Math. Comput., 312, 78-90 (2017) · Zbl 1426.92006
[15] Wang, J.; Xu, C.; Chen, M. Z.; Feng, J.; Chen, G., Stochastic feedback coupling synchronization of networked harmonic oscillators, Automatica, 87, 404-411 (2018) · Zbl 1378.93051
[16] Derler, P.; Lee, E. A.; Vincentelli, A. S., Modeling cyber-physical systems, Proc. IEEE, 100, 1, 13-28 (2012)
[17] Iasiello, E., Cyber attack: a dull tool to shape foreign policy, (Proceedings of the International Conference on Cyber Conflict, Tallinn, Estonia (2013)), 1-18
[18] Wan, Y.; Cao, J.; Chen, G.; Huang, W., Distributed observer-based cyber-security control of complex dynamical networks, IEEE Trans. Circuits Syst. I Reg. Papers, 64, 11, 2966-2975 (2017) · Zbl 1468.94855
[19] Feng, Z.; Hu, G.; Wen, G., Distributed synchronous tracking for multi-agent systems under two types of attacks, Int. J. Roust. Nonlinear, 26, 5, 896-918 (2016) · Zbl 1333.93007
[20] He, W. L.; Gao, X. Y.; Zhong, W. M.; Qian, F., Secure impulsive synchronization control of multi-agent systems under deception attacks, Inf. Sci., 459, 354-368 (2018) · Zbl 1448.93248
[21] Cai, S. M.; Zhou, P. P.; Liu, Z. G., Synchronization analysis of hybrid-coupled delayed dynamical networks with impulsive effects: a unified synchronization criterion, J. Frankl. Inst., 352, 5, 2065-2086 (2015) · Zbl 1395.93224
[22] Liu, B.; Liu, X. Z.; Chen, G. R.; Wang, H. Y., Robust impulsive synchronization of uncertain dynamical networks, IEEE Trans. Circuits Syst.-I, 52, 7, 1431-1441 (2005) · Zbl 1374.82016
[23] Guan, Z. H.; Liu, Z. W.; Feng, G.; Wang, Y. W., Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control, IEEE Trans. Circuits Syst. I: Regular Papers, 57, 8, 2182-2195 (2010) · Zbl 1468.93086
[24] Zhou, J.; Wu, Q. J.; Lan, X., Impulsive pinning complex dynamical networks and applications to firing neuronal synchronization, Nonlinear Dyn., 69, 3, 1393-1403 (2019) · Zbl 1253.93105
[25] Lu, J. Q.; Danial, W. C.H.; Cao, J. D.; Kurths, J., Single impulsive controller for globally exponential synchronization of dynamical networks, Nonlinear Anal., 14, 581-593 (2013) · Zbl 1254.93133
[26] Lu, J. Q.; Kurths, J.; Cao, J.; Mahdavi, N.; Huang, C., Synchronization control for nonlinear stochastic dynamical networks: pinning impulsive strategy, IEEE Trans. Neural Netw. Learn. Syst., 23, 285-292 (2012)
[27] Liu, X. W.; Chen, T. P., Cluster synchronization in directed networks via intermittent pinning control, IEEE Trans. Neural Netw., 22, 5, 1009-1020 (2011)
[28] Zhi, F.; Wen, G.; Hu, G., Distributed secure coordinated control for multiagent systems under strategic attacks, IEEE Trans. Cybern., 47, 5, 1273-1284 (2017)
[29] Leng, H.; Wu, Z. Y., Cluster synchronization of community network with distributed time delays via impulsive control[J], Chin. Phys. B, 25, 11, 159-166 (2016)
[30] He, W.; Qian, F.; Lam, J., Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control: error estimation, optimization and design[J], Automatica, 62, 249-262 (2015) · Zbl 1330.93011
[31] Li, L.; Ho, D. W.C.; Cao, J., Pinning cluster synchronization in an array of coupled neural networks under event-based mechanism, Neural Netw., 1-12 (2016) · Zbl 1417.34111
[32] Wang, F.; Yang, Y.; Hu, M., Projective cluster synchronization of fractional-order coupled-delay complex network via adaptive pinning control, Physica A, 434, 134-143 (2015) · Zbl 1400.93149
[33] Wu, Q., A new type of the Gronwall-Bellman inequality and its application to fractional stochastic differential equations, Cogent Math., 4, 1279-1285 (2017)
[34] Wang, X.; She, K.; Zhong, S. M.; Yang, H. L., Pinning cluster synchronization of delayed complex dynamical networks with nonidentical nodes and impulsive effects, Nonlinear Dyn., 88, 2771-2782 (2017) · Zbl 1398.93295
[35] Tang, Z.; Park, J. H.; Lee, T. H.; Feng, J. W., Mean square exponential synchronization for impulsive coupled neural networks with time-varying delays and stochastic disturbances, Complexity, 21, 5, 190-202 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.