Gendron, Quentin; Tahar, Guillaume Abelian differentials with prescribed singularities. (Différentielles abéliennes à singularités prescrites.) (French. English summary) Zbl 1480.30032 J. Éc. Polytech., Math. 8, 1397-1428 (2021). Let \(X\) be a closed Riemann surface of genus \(g\) and let \(K_{X}\) be its canonical line bundle. An abelian differential on \(X\) is a meromorphic section of \(K_{X}\). It is well known that the local inviariants of an abelian differential \(\omega\) at a point \(p\) are the order of \(\omega\) at \(p\), and the residue at \(p\), if \(p\) is a pole. These local invariants are subject to some local and global constraints: ● the residue at a simple pole is always non-zero;● the sum of all residues is equal to zero;● the sum of the orders of the poles and the zeros is equal to \(2g-2\). This paper answers the following natural question: can we find an abelian differential with prescribed orders of zeros and poles and prescribed residues at the poles, if all above constraints are satisfied?More formally, consider a partition of \(2g-2\) of the form \[ \mu=(a_{1}, \dots, a_{n}, -b_{1}, \dots, -b_{p}, -1, \dots, -1) \] where \(a_{i}\) are positive integers, \(b_{i}\) are greater than or equat to \(2\) and the number of \(-1\) is equal to \(s\). The stratum of abelian differentials of type \(\mu\) is denoted by \(\Omega\mathcal{M}_{g}(\mu)\) and consists of all abelian differentials over a closed Riemann surface of genus \(g\) having zeros of order \(a_{i}\), \(s\) simple poles and higher order poles of order \(b_{i}\). The possible residues of an abelian differential of order \(\mu\) belong to the set \[ \mathcal{R}_{g}(\mu)=\{ (r_{1}, \dots, r_{p+s}) \in \mathbb{C}^{p}\times (\mathbb{C}^{*})^{s} \ | \ r_{1}+\cdots +r_{p+s}=0\} \ . \] The main result of the paper shows what configuration of residues can be realized: Theorem 1.1. Let \(g\geq 1\). The map \(\Omega\mathcal{M}_{g}(\mu) \rightarrow \mathcal{R}_{g}(\mu)\) associating to each abelian differential its residues is surjective when restricted to each connected component of the stratum \(\Omega\mathcal{M}_{g}(\mu)\).In genus \(g=0\), the map \(\Omega\mathcal{M}_{0}(\mu) \rightarrow \mathcal{R}_{0}(\mu)\) is not surjective in general and two other cases may occur:1. if \(s=0\) and there is an index \(i\) such that \[ a_{i} > \sum_{j=1}^{p} b_{j} - (p+1) \ , \] then the image of the map is \(\mathcal{R}_{0}(\mu) \setminus \{0\}\).2. if \(s\geq 2\) and \(p=0\), then the image of the map is the complement of the union of the planes \(\mathbb{C}^{*}(x_{1}, \dots, x_{s_{1}}, -y_{1}, \dots, -y_{s_{2}})\), where \(x_{i}, y_{j} \in \mathbb{N}\) are coprime and \[ \sum_{i=1}^{s_{1}} a_{i} = \sum_{j=1}^{s_{2}} b_{j} \leq \max(a_{1}, \dots, a_{n}) \ . \] Reviewer: Andrea Tamburelli (Houston) Cited in 11 Documents MSC: 30F30 Differentials on Riemann surfaces 57M50 General geometric structures on low-dimensional manifolds 14H55 Riemann surfaces; Weierstrass points; gap sequences Keywords:abelian differential; flat surface; strata; residue × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Bainbridge, Matt; Chen, Dawei; Gendron, Quentin; Grushevsky, Samuel; Möller, Martin, Compactification of strata of abelian differentials, Duke Math. J., 167, 12, 2347-2416 (2018) · Zbl 1403.14058 · doi:10.1215/00127094-2018-0012 [2] Bainbridge, Matt; Chen, Dawei; Gendron, Quentin; Grushevsky, Samuel; Möller, Martin, Strata of \(k\)-differentials, Algebraic Geom., 6, 2, 196-233 (2019) · Zbl 1440.14148 · doi:10.14231/ag-2019-011 [3] Boissy, Correntin, Connected components of the strata of the moduli space of meromorphic differentials, Comment. Math. Helv., 90, 2, 255-286 (2015) · Zbl 1323.30060 · doi:10.4171/CMH/353 [4] de Saint-Gervais, Henri Paul, Uniformisation des surfaces de Riemann (2010), ENS Éditions, Lyon · Zbl 1228.30001 [5] Eisenbud, David; Harris, Joe, Existence, decomposition, and limits of certain Weierstrass points, Invent. Math., 87, 495-515 (1987) · Zbl 0606.14014 · doi:10.1007/BF01389240 [6] Esteves, Eduardo; Medeiros, Nivaldo, Limit canonical systems on curves with two components, Invent. Math., 149, 2, 267-338 (2002) · Zbl 1046.14012 · doi:10.1007/s002220200211 [7] Eremenko, Alexandre, Co-axial monodromy, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 20, 2, 619-634 (2020) · Zbl 1481.57032 · doi:10.2422/2036-2145.201706_022 [8] Gendron, Quentin, Sur les nœuds de Weierstraß, Ann. H. Lebesgue, 4, 571-589 (2021) · Zbl 1486.14040 · doi:10.5802/ahl.81 [9] Gendron, Quentin; Tahar, Guillaume, Différentielles à singularités prescrites (2017) [10] Gendron, Quentin; Tahar, Guillaume, Différentielles quadratiques à singularités prescrites (2021) [11] Gendron, Quentin; Tahar, Guillaume, \(k\)-différentielles à singularités prescrites (2021) [12] Kontsevich, Maxim; Zorich, Anton, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153, 3, 631-678 (2003) · Zbl 1087.32010 · doi:10.1007/s00222-003-0303-x [13] Masur, Howard; Smillie, John, Quadratic differentials with prescribed singularities and pseudo-Anosov diffeomorphisms, Comment. Math. Helv., 68, 2, 289-307 (1993) · Zbl 0792.30030 · doi:10.1007/BF02565820 [14] Mullane, Scott, Strata of differentials of the second kind, positivity and irreducibility of certain Hurwitz spaces (2021) · Zbl 1473.14050 [15] Möller, Martin; Ulirsch, Martin; Werner, Annette, Realizability of tropical canonical divisors, J. Eur. Math. Soc. (JEMS), 23, 1, 185-217 (2021) · Zbl 1466.14033 · doi:10.4171/jems/1009 [16] Naveh, Yoav, Tight upper bounds on the number of invariant components on translation surfaces, Israel J. Math., 165, 1, 211-231 (2008) · Zbl 1148.32008 · doi:10.1007/s11856-008-1010-5 [17] Reyssat, Éric, Quelques aspects des surfaces de Riemann, 77 (1989), Birkhäuser · Zbl 0689.30001 [18] Tahar, Guillaume, Counting saddle connections in flat surfaces with poles of higher order, Geom. Dedicata, 196, 1, 145-186 (2018) · Zbl 1403.32003 · doi:10.1007/s10711-017-0313-2 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.