×

Testing for strict stationarity in a random coefficient autoregressive model. (English) Zbl 1480.62182

Summary: We propose a procedure to decide between the null hypothesis of (strict) stationarity and the alternative of nonstationarity, in the context of a random coefficient autoregression (RCAR). The procedure is based on randomizing a diagnostic which diverges to positive infinity under the null, and drifts to zero under the alternative. Thence, we propose a randomized test which can be used directly and – building on it – a decision rule to discern between the null and the alternative. The procedure can be applied under very general circumstances: albeit developed for an RCAR model, it can be used in the case of a standard AR(1) model, without requiring any modifications or prior knowledge. Also, the test works (again with no modification or prior knowledge being required) in the presence of infinite variance, and in general requires minimal assumptions on the existence of moments.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62G10 Nonparametric hypothesis testing
62P20 Applications of statistics to economics

Software:

ump
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Andrews, D. W., Heteroskedasticity and autocorrelation consistent covariance matrix estimation, Econometrica, 59, 3, 817-858 (1991) · Zbl 0732.62052
[2] Arltova, M.; Fedorova, D., Selection of unit root test on the basis of length of the time series and value of ar (1) parameter, Statistika-Statistics and Economy Journal, 96, 3, 47-64 (2016)
[3] Aue, A., Near-integrated random coefficient autoregressive time series, Econometric Theory, 24, 5, 1343-1372 (2008) · Zbl 1284.62542
[4] Aue, A.; Horváth, L., Quasi-likelihood estimation in stationary and nonstationary autoregressive models with random coefficients, Statistica Sinica, 973-999 (2011) · Zbl 1232.62116
[5] Aue, A.; Horváth, L.; Steinebach, J., Estimation in random coefficient autoregressive models, Journal of Time Series Analysis, 27, 1, 61-76 (2006) · Zbl 1112.62084
[6] Bandi, F.; Corradi, V., Nonparametric nonstationarity tests, Econometric Theory, 30, 1, 127-149 (2014) · Zbl 1291.62093
[7] Banerjee, A.; Chevillon, G.; Kratz, M., Probabilistic forecasting of bubbles and flash crashes, The Econometrics Journal, 23, 2, 297-315 (2020) · Zbl 07546369
[8] Barnett, W. A.; Gallant, A. R.; Hinich, M. J.; Jungeilges, J. A.; Kaplan, D. T.; Jensen, M. J., A single-blind controlled competition among tests for nonlinearity and chaos, Journal of Econometrics, 82, 1, 157-192 (1997) · Zbl 1008.62715
[9] Beechey, M.; Österholm, P., Revisiting the uncertain unit root in GDP and CPI: testing for non-linear trend reversion, Economics Letters, 100, 2, 221-223 (2008)
[10] Berkes, I.; Dabrowski, A.; Dehling, H.; Philipp, W., A strong approximation theorem for sums of random vectors in the domain of attraction to a stable law, Acta Mathematica Hungarica, 48, 1-2, 161-172 (1986) · Zbl 0615.60026
[11] Berkes, I.; Dehling, H., Almost sure and weak invariance principles for random variables attracted by a stable law, Probability Theory and Related Fields, 83, 3, 331-353 (1989) · Zbl 0661.60051
[12] Berkes, I.; Horváth, L.; Ling, S., Estimation in nonstationary random coefficient autoregressive models, Journal of Time Series Analysis, 30, 4, 395-416 (2009) · Zbl 1224.62046
[13] Brand, C.; Gerdesmeier, D.; Roffia, B., Estimating the Trend of M3 Income Velocity Underlying the Reference Value for Monetary Growth. ECB Occasional Paper Series No. 3 (2002)
[14] Busetti, F.; Harvey, A., Tests of strict stationarity based on quantile indicators, Journal of Time Series Analysis, 31, 6, 435-450 (2010) · Zbl 1226.91084
[15] Cai, G.-H., Chover-type laws of the iterated logarithm for weighted sums of ρ-mixing sequences, International Journal of Stochastic Analysis 2006: (2006) · Zbl 1109.60026
[16] Cai, Y.; Shintani, M., On the alternative long-run variance ratio test for a unit root, Econometric Theory, 22, 3, 347-372 (2006) · Zbl 1125.62096
[17] Caner, M.; Hansen, B. E., Threshold autoregression with a unit root, Econometrica, 69, 6, 1555-1596 (2001) · Zbl 1018.62064
[18] Carrasco, M.; Chen, X., Mixing and moment properties of various garch and stochastic volatility models, Econometric Theory, 18, 1, 17-39 (2002) · Zbl 1181.62125
[19] Cavaliere, G.; Georgiev, I.; Taylor, A. R., Unit root inference for nonstationary linear processes driven by infinite variance innovations, Econometric Theory, 34, 2, 302-347 (2018) · Zbl 1441.62229
[20] Chow, Y. S.; Teicher, H., Probability Theory: Independence, Interchangeability, Martingales (2012), Berlin, Germany: Springer Science & Business Media, Berlin, Germany · Zbl 0399.60001
[21] Corradi, V., Deciding between I (0) and I (1) via FLIL-based bounds, Econometric Theory, 15, 5, 643-663 (1999) · Zbl 0962.62082
[22] Corradi, V.; Swanson, N. R., The effects of data transformation on common cycle, cointegration, and unit root tests: Monte Carlo and a simple test, Journal of Econometrics, 132, 1, 195-229 (2006) · Zbl 1337.62253
[23] Corradi, V.; Swanson, N. R.; White, H., Testing for stationarity-ergodicity and for comovements between nonlinear discrete time markov processes, Journal of Econometrics, 96, 1, 39-73 (2000) · Zbl 1054.62577
[24] Diaconis, P.; Freedman, D., Iterated random functions, SIAM Review, 41, 1, 45-76 (1999) · Zbl 0926.60056
[25] Distaso, W., Testing for unit root processes in random coefficient autoregressive models, Journal of Econometrics, 142, 1, 581-609 (2008) · Zbl 1418.62314
[26] Douc, R.; Moulines, E.; Stoffer, D., Nonlinear Time Series: Theory, Methods and Applications with R Examples (2014), Boca Raton, FL: CRC Press, Boca Raton, FL · Zbl 1306.62026
[27] Eckmann, J.-P.; Kamphorst, S. O.; Ruelle, D.; Ciliberto, S., Liapunov exponents from time series, Physical Review A: General Physics, 34, 6, 4971-4979 (1986)
[28] Eckmann, J.-P.; Ruelle, D., The Theory of Chaotic Attractors, Ergodic theory of chaos and strange attractors, 273-312 (1985), Berlin, Germany: Springer, Berlin, Germany · Zbl 0989.37516
[29] Elliot, B.; Rothenberg, T.; Stock, J., Efficient tests of the unit root hypothesis, Econometrica, 64, 4, 813-836 (1996) · Zbl 0888.62088
[30] Embrechts, P.; Klüppelberg, C.; Mikosch, T., Modelling Extremal Events: For Insurance and Finance, 33 (2013), Berlin, Germany: Springer Science & Business Media, Berlin, Germany
[31] Enders, W.; Lee, J., The flexible Fourier form and dickey-fuller type unit root tests, Economics Letters, 117, 1, 196-199 (2012) · Zbl 1255.62243
[32] Fink, T.; Kreiss, J.-P., Bootstrap for random coefficient autoregressive models, Journal of Time Series Analysis, 34, 6, 646-667 (2013) · Zbl 1306.62195
[33] Francq, C.; Zakoïan, J.-M., Strict stationarity testing and estimation of explosive and stationary generalized autoregressive conditional heteroscedasticity models, Econometrica, 80, 2, 821-861 (2012) · Zbl 1274.62590
[34] Geyer, C. J.; Meeden, G. D., Fuzzy and randomized confidence intervals and p-values, Statistical Science, 20, 4, 358-366 (2005) · Zbl 1130.62319
[35] Giraitis, L.; Kapetanios, G.; Yates, T., Inference on stochastic time-varying coefficient models, Journal of Econometrics, 179, 1, 46-65 (2014) · Zbl 1293.62184
[36] Giraitis, L.; Leipus, R.; Philippe, A., A test for stationarity versus trends and unit roots for a wide class of dependent errors, Econometric Theory, 22, 6, 989-1029 (2006) · Zbl 1170.62411
[37] Granger, C. W.; Swanson, N. R., An introduction to stochastic unit-root processes, Journal of Econometrics, 80, 1, 35-62 (1997) · Zbl 0885.62100
[38] Guo, S.; Li, D.; Li, M., Strict Stationarity Testing and Global Robust Quasi-Maximum Likelihood Estimation of Dar Models. Technical Report, Working Paper (2016), London, UK: London School of Economics, London, UK
[39] Hill, J.; Li, D.; Peng, L., Uniform interval estimation for an AR(1) process with AR errors, Statistica Sinica, 26, 1, 119-136 (2017) · Zbl 1419.62232
[40] Hill, J.; Peng, L., Unified interval estimation for random coefficient autoregressive models, Journal of Time Series Analysis, 35, 3, 282-297 (2014) · Zbl 1302.62187
[41] Horváth, L.; Trapani, L., Statistical inference in a random coefficient panel model, Journal of Econometrics, 193, 1, 54-75 (2016) · Zbl 1420.62386
[42] Horváth, L.; Trapani, L., Testing for randomness in a random coefficient autoregression, Journal of Econometrics, 209, 2, 338-352 (2019) · Zbl 1452.62648
[43] Hwang, S. Y.; Basawa, I., Explosive random-coefficient AR(1) processes and related asymptotics for least-squares estimation, Journal of Time Series Analysis, 26, 6, 807-824 (2005) · Zbl 1097.62081
[44] Ibragimov, I. A., Some limit theorems for stationary processes, Theory of Probability & Its Applications, 7, 4, 349-382 (1962) · Zbl 0119.14204
[45] Janečková, H.; Prášková, Z., CWLS and ML estimates in a heteroscedastic RCA (1) model, Statistics & Decisions, 22, 3, 245-259 (2004) · Zbl 1057.62071
[46] Kanaya, S., A Nonparametric Test for Stationarity in Continuous Time Markov Processes. Job Market Paper (2011), Oxford, UK: University of Oxford, Oxford, UK
[47] Kapetanios, G., Testing for Strict Stationarity. Technical Report, Working Paper, (2007), London, UK: Queen Mary University of London, London, UK
[48] Kapetanios, G.; Shin, Y.; Snell, A., Testing for a unit root in the nonlinear STAR framework, Journal of Econometrics, 112, 2, 359-379 (2003) · Zbl 1027.62065
[49] Kiliç, R., Testing for a unit root in a stationary ESTAR process, Econometric Reviews, 30, 3, 274-302 (2011) · Zbl 1210.62122
[50] Kwiatkowski, D.; Phillips, P. C.; Schmidt, P.; Shin, Y., Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?, Journal of Econometrics, 54, 1-3, 159-178 (1992) · Zbl 0871.62100
[51] Leybourne, S. J.; McCabe, B. P., A consistent test for a unit root, Journal of Business & Economic Statistics, 12, 2, 157-166 (1994)
[52] Leybourne, S. J.; McCabe, B. P.; Tremayne, A. R., Can economic time series be differenced to stationarity?, Journal of Business & Economic Statistics, 14, 4, 435-446 (1996)
[53] Lieberman, O.; Phillips., P. C., Hybrid Stochastic Local Unit Roots. (2017)
[54] Lima, L. R.; Neri, B., Uncertainty Analysis in Econometrics with Applications, A test for strict stationarity, 17-30 (2013), Berlin, Germany: Springer, Berlin, Germany
[55] Ling, S., Estimation and testing stationarity for double-autoregressive models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66, 1, 63-78 (2004) · Zbl 1061.62138
[56] McCabe, B. P.; Tremayne, A. R., Testing a time series for difference stationarity, The Annals of Statistics, 23, 3, 1015-1028 (1995) · Zbl 0838.62082
[57] Murray, C. J.; Nelson, C. R., The uncertain trend in US GDP, Journal of Monetary Economics, 46, 1, 79-95 (2000)
[58] Nagakura, D., Asymptotic theory for explosive random coefficient autoregressive models and inconsistency of a unit root test against a stochastic unit root process, Statistics & Probability Letters, 79, 24, 2476-2483 (2009) · Zbl 1176.62087
[59] Nelson, C. R.; Plosser, C. R., Trends and random walks in macroeconmic time series: some evidence and implications, Journal of Monetary Economics, 10, 2, 139-162 (1982)
[60] Nicholls, D. F.; Quinn, B. G., Random Coefficient Autoregressive Models: An Introduction, 11 (2012), Berlin, Germany: Springer Science & Business Media, Berlin, Germany
[61] Nielsen, H. B.; Rahbek, A., Unit root vector autoregression with volatility induced stationarity, Journal of Empirical Finance, 29, 144-167 (2014)
[62] Peng, L.; Yao, Q., Nonparametric regression under dependent errors with infinite variance, Annals of the Institute of Statistical Mathematics, 56, 1, 73-86 (2004) · Zbl 1050.62047
[63] Petrov, V. V., Limit Theorems of Probability Theory: Sequences of Independent Random Variables. (1995) · Zbl 0826.60001
[64] Phillips, P. C.; Ploberger, W., Posterior odds testing for a unit root with data-based model selection, Econometric Theory, 10, 3-4, 774-808 (1994)
[65] Phillips, P. C.; Ploberger, W., An asymtotic theory of Bayesian inference for time series, EconometricaSociety, 64, 2, 381-412 (1996) · Zbl 0862.62030
[66] Phillips, P. C. B., Time series regression with a unit root and infinite-variance errors, Econometric Theory, 6, 1, 44-62 (1990)
[67] Quinn, B., A note on the existence of strictly stationary solutions to bilinear equations, Journal of Time Series Analysis, 3, 4, 249-252 (1982) · Zbl 0517.62086
[68] Rudebusch, G. D., The uncertain unit root in real GNP, The American Economic Review, 83, 1, 264-272 (1993)
[69] Serfling, R. J., Moment inequalities for the maximum cumulative sum, The Annals of Mathematical Statistics, 41, 4, 1227-1234 (1970) · Zbl 0272.60013
[70] Shintani, M.; Linton, O., Nonparametric neural network estimation of lyapunov exponents and a direct test for chaos, Journal of Econometrics, 120, 1, 1-33 (2004) · Zbl 1282.62212
[71] Song, K., Ordering-free inference from locally dependent data, arXiv Preprint, arXiv:1604.00447 (2016)
[72] Stock, J. H., Deciding between I(1) and I(0), Journal of Econometrics, 63, 1, 105-131 (1994) · Zbl 0814.62080
[73] Tsay, R. S., Conditional heteroscedastic time series models, Journal of the American Statistical Association, 82, 398, 590-604 (1987) · Zbl 0636.62092
[74] Tsay, R. S., Unit Root Tests with Threshold Innovations (1997), Chicago, IL: University of Chicago, Chicago, IL
[75] Wang, X.; Yu, J., Limit theory for an explosive autoregressive process, Economics Letters, 126, 176-180 (2015) · Zbl 1321.62111
[76] Yoon, G., A note on some properties of STUR processes, Oxford Bulletin of Economics and Statistics, 68, 2, 253-260 (2006)
[77] Zhao, Z.-W.; Wang, D.-H., Statistical inference for generalized random coefficient autoregressive model, Mathematical and Computer Modelling, 56, 7-8, 152-166 (2012) · Zbl 1255.62289
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.