×

Optimal design of electrode polarization in piezoelectric unimorph beams to induce traveling waves. (English) Zbl 1481.74624

Summary: In this paper a milli-sized traveling wave actuator is designed by optimizing the polarization direction. Two different sets of electrodes are needed to generate the traveling wave. The topology optimization method is used to get the optimal sets of electrodes that minimize the difference between a pure traveling wave and the deflection generated. Classical issues in topology optimization problem such as mesh-dependence or intermediate densities are overcome by using filtering and projection techniques. Examples with different boundary conditions are presented in order to validate the model.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74F15 Electromagnetic effects in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
78A55 Technical applications of optics and electromagnetic theory
90C90 Applications of mathematical programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Machin, K. E., Wave propagation along flagella, J. Exp. Biol., 35, 4, 796-806 (1958)
[2] Taylor, G. I., Analysis of the swimming of microscopic organisms, Proc. R. Soc. London, Ser. A, 209, 1099, 447-461 (1951) · Zbl 0043.40302
[3] Long, J.; Mchenry, M.; Boetticher, N., Undulatory swimming: how traveling waves are produced and modulated in sunfish (lepomis gibbosus), J. Exp. Biol., 192, 1, 129-145 (1994)
[4] Fish, F. E., Transitions from drag-based to lift-based propulsion in mammalian swimming, Am. Zool., 36, 6, 628-641 (1996)
[5] Watson, B.; Friend, J.; Yeo, L., Piezoelectric ultrasonic micro/milli-scale actuators, Sens. Actuators A, 152, 2, 219-233 (2009)
[6] H. Hariri, Y. Bernard, A. Razek, H. Borgmann, Locomotion principles for piezoelectric miniature robots, Actuator 10, Conference Proceedings March 2015 (2010).
[7] Díaz-Molina, A.; Ruiz-Díez, V.; Hernando-García, J.; Ababneh, A.; Seidel, H.; Sánchez-Rojas, J. L., Generation of linear traveling waves in piezoelectric plates in air and liquid, Micromachines, 10, 5, 283 (2019)
[8] Hernando-García, J.; García-Caraballo, J. L.; Ruiz-Díez, V.; Sánchez-Rojas, J. L., Motion of a legged bidirectional miniature piezoelectric robot based on traveling wave generation, Micromachines, 11, 3, 321 (2020)
[9] Dehez, B.; Vloebergh, C.; Labrique, F., Study and optimization of traveling wave generation in finite-length beams, Math. Comput. Simul., 81, 2, 290-301 (2010) · Zbl 1206.78022
[10] S. Malladi, D. Avirovik, S. Priya, P. Tarazaga, Travelling wave phenomenon through a piezoelectric actuation on a free-free beam, Proceedings of ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 1(2014).
[11] Malladi, S.; Avirovik, D.; Priya, S.; Tarazaga, P., Characterization and representation of mechanical waves generated in piezo-electric augmented beams, Smart Mater. Struct., 24, 10, 105026 (2015)
[12] Kumar, A.; DasGupta, A., Generation of harmonic waves in beams using boundary excitation, Int. J. Mech. Sci., 159, 234-245 (2019)
[13] Brand, Z.; Cole, M. O., Controllability and actuator placement optimization for active damping of a thin rotating ring with piezo-patch transducers, J. Sound Vib., 472, 115172 (2020)
[14] Kögl, M.; Silva, E. C.N., Topology optimization of smart structures: design of piezoelectric plate and shell actuators, Smart Mater. Struct., 14, 2, 387-399 (2005)
[15] Carbonari, R. C.; Silva, E. C.N.; Nishiwaki, S., Optimum placement of piezoelectric material in piezoactuator design, Smart Mater. Struct., 16, 1, 207-220 (2007)
[16] Luo, Z.; Gao, W.; Song, C., Design of multi-phase piezoelectric actuators, J. Intell. Mater. Syst. Struct., 21, 18, 1851-1865 (2010)
[17] Kang, Z.; Wang, R.; Tong, L., Combined optimization of bi-material structural layout and voltage distribution for in-plane piezoelectric actuation, Comput. Methods Appl. Mech. Engrg., 200, 13-16, 1467-1478 (2011) · Zbl 1228.74064
[18] Kang, Z.; Wang, X.; Luo, Z., Topology optimization for static shape control of piezoelectric plates with penalization on intermediate actuation voltage, J. Mech. Des., 134, 5, 051006 (2012)
[19] Kang, Z.; Tong, L., Topology optimization-based distribution design of actuation voltage in static shape control of plates, Comput. Struct., 86, 19, 1885-1893 (2008)
[20] Ruiz, D.; Bellido, J. C.; Donoso, A., Optimal design of piezoelectric modal transducers, Arch. Comput. Methods Eng., 25, 2, 313-347 (2018) · Zbl 1392.74077
[21] Ruiz, D.; Díaz-Molina, A.; Sigmund, O.; Donoso, A.; Bellido, J. C.; Sánchez-Rojas, J. L., Optimal design of robust piezoelectric unimorph microgrippers, Appl. Math. Modell., 55, 1-12 (2018) · Zbl 1480.74256
[22] Ruiz, D.; Bellido, J. C.; Donoso, A., Design of piezoelectric modal filters by simultaneously optimizing the structure layout and the electrode profile, Struct. Multidisc. Optim., 53, 715-730 (2016)
[23] Donoso, A.; Bellido, J. C., Systematic design of distributed piezoelectric modal sensors/actuators for rectangular plates by optimizing the polarization profile, Struct. Multidisc. Optim., 38, 4, 347-356 (2009) · Zbl 1274.74117
[24] Sánchez-Rojas, J. L.; Hernando, J.; Donoso, A.; Bellido, J. C.; Manzaneque, T.; Ababneh, U., Modal optimization and filtering in piezoelectric microplate resonators, J. Micromech. Microeng., 20, 5, 055027 (2010)
[25] Gere, J. M.; Timoshenko, S., Mechanics of Materials. Mechanics of Materials, 3rd Edition (1991), Springer
[26] Oñate, E., Structural Analysis with the Finite Element Method. Linear Statics. Structural Analysis with the Finite Element Method. Linear Statics, 1st Edition (2013), Springer · Zbl 1279.74004
[27] Blevins, R. D., Formulas for Natural Frequency and Mode Shape (1979), Van Nostrand Reinhold Co
[28] Moheimani, S.; Fleming, A., Piezoelectric Transducers for Vibration Control and Damping, 2nd Edition (2006), Springer · Zbl 1103.93006
[29] Svanberg, K., The method of moving asymptotes-a new method for structural optimization, Int. J. Numer. Meth. Eng., 24, 2, 359-373 (1987) · Zbl 0602.73091
[30] Guest, J. K.; Prvost, J. H.; Belytschko, T., Achieving minimum length scale in topology optimization using nodal design variables and projection functions, Int. J. Numer. Meth. Eng., 61, 2, 238-254 (2004) · Zbl 1079.74599
[31] Wang, F.; Sigmund, O.; Jensen, J., Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems, Comput. Methods. Appl. Mech. Eng., 276, 453-472 (2014) · Zbl 1423.74768
[32] Oñate, E., Cálculo de Estructuras por el Método de Elementos Finitos, Análisis estático lineal, 2nd Edition (1995), CIMNE
[33] Cook, R.; Malkus, D.; Plesha, M., Concepts and Applications of Finite Element Analysis, 4th Edition (2001), Wiley
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.