×

Surface, size and topological effects for some nematic equilibria on rectangular domains. (English) Zbl 1481.76024

Summary: We study nematic equilibria on rectangular domains, in a reduced two-dimensional Landau-de Gennes framework. These reduced equilibria carry over to the three-dimensional framework at a special temperature. There is one essential model variable, \( \epsilon \), which is a geometry-dependent and material-dependent variable. We compute the limiting profiles exactly in two distinguished limits: the \(\epsilon \to 0\) limit relevant for macroscopic domains and the \(\epsilon \to \infty\) limit relevant for nanoscale domains. The limiting profile has line defects near the shorter edges in the \(\epsilon \to \infty\) limit, whereas we observe fractional point defects in the \(\epsilon \to 0\) limit. The analytical studies are complemented by some bifurcation diagrams for these reduced equilibria as a function of \(\epsilon\) and the rectangular aspect ratio. We also introduce the concept of ‘non-trivial’ topologies and study the relaxation of non-trivial topologies to trivial topologies mediated via point and line defects, with potential consequences for non-equilibrium phenomena and switching dynamics.

MSC:

76A15 Liquid crystals
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] de Gennes, PG, Prost, J. The Physics of Liquid Crystals, Number 83. Oxford: Oxford University Press, 1995.
[2] Stewart, IW. The Static and Dynamic Continuum Theory of Liquid Crystals, Vol. 17. London: Taylor and Francis, 2004.
[3] Bahadur, B. Liquid Crystals: Applications and Uses, Vol. 1. Singapore: World Scientific, 1990.
[4] Gallardo, BS, Gupta, VK, Eagerton, FD, et al. Electrochemical principles for active control of liquids on submillimeter scales. Science 1999; 283(5398): 57-60.
[5] Brake, JM, Daschner, MK, Luk, Y-Y, Abbott, NL. Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals. Science 2003; 302(5653): 2094-2097.
[6] Lagerwall, JPF, Schütz, C, Salajkova, M, et al. Cellulose nanocrystal-based materials: From liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 2014; 6(1): e80.
[7] Lagerwall, JPF, Scalia, G. A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio-and microtechnology. Curr Appl Phys 2012; 12(6): 1387-1412.
[8] Golovaty, D, Montero, JA, Sternberg, P. Dimension reduction for the Landau-de Gennes model on curved nematic thin films. J Nonlin Sci 2017; 27(6): 1905-1932. · Zbl 1382.35220
[9] Bethuel, F, Brezis, H, Hélein, F, et al. Ginzburg-Landau Vortices, Vol. 13. Berlin: Springer, 1994. · Zbl 0802.35142
[10] Kralj, S, Majumdar, A. Order reconstruction patterns in nematic liquid crystal wells. Proc R Soc A 2014; 470: 20140276. · Zbl 1320.82067
[11] Kralj, S, Rosso, R, Virga, EG. Finite-size effects on order reconstruction around nematic defects. Phys Rev E 2010; 81(2): 021702.
[12] Luo, C, Majumdar, A, Erban, R. Multistability in planar liquid crystal wells. Phys Rev E 2012; 85(6): 061702.
[13] Kusumaatmaja, H, Majumdar, A. Free energy pathways of a multistable liquid crystal device. Soft Matter 2015; 11(24): 4809-4817.
[14] Lewis, AH, Garlea, I, Alvarado, J, et al. Colloidal liquid crystals in rectangular confinement: Theory and experiment. Soft Matter 2014; 10(39): 7865-7873.
[15] Tsakonas, C, Davidson, AJ, Brown, CV, Mottram, NJ. Multistable alignment states in nematic liquid crystal filled wells. Appl Phys Lett 2007; 90(11): 111913.
[16] Majumdar, A, Zarnescu, A. Landau-de Gennes theory of nematic liquid crystals: The Oseen-Frank limit and beyond. Arch Rati Mech Analysis 2010; 196(1): 227-280. · Zbl 1304.76007
[17] Frank, FC. On the theory of liquid crystals. Discuss Faraday Soc 1958; 25: 19-28.
[18] Bethuel, F, Brezis, H, Hélein, F. Asymptotics for the minimization of a Ginzburg-Landau functional. Calculus Variations Partial Differ Eqns 1993; 1(2): 123-148. · Zbl 0834.35014
[19] Robinson, M, Luo, C, Farrell, PE, Erban, R, Majumdar, A. From molecular to continuum modelling of bistable liquid crystal devices. Liquid Crystals 2017; 44(14-15): 2267-2284.
[20] Wang, Y, Canevari, G, Majumdar, A. Order reconstruction for nematics on squares with isotropic inclusions: A Landau-de Gennes study. SIAM J Appl Math 2019; 79(4): 1314-1340. · Zbl 1473.35568
[21] Walton, J, Mottram, NJ, McKay, G. Nematic liquid crystal director structures in rectangular regions. Phys Rev E 2018; 97(2): 022702.
[22] Virga, EG. Variational Theories for Liquid Crystals, Vol. 8. Boca Raton, FL: CRC Press, 1995. · Zbl 0814.49002
[23] Evans, LC. Partial Differential Equations. Providence, RI: American Mathematical Society, 2010. · Zbl 1194.35001
[24] Golovaty, D, Montero, JA, Sternberg, P. Dimension reduction for the Landau-de Gennes model in planar nematic thin films. J Nonlin Sci 2015; 25(6): 1431-1451. · Zbl 1339.35241
[25] Canevari, G, Harris, J, Majumdar, A, Wang, Y. The well order reconstruction solution for three-dimensional wells, in the Landau-de Gennes theory. Int J Non-Lin Mech 2020; 119: 103342.
[26] Ignat, R, Nguyen, L, Slastikov, V, Zarnescu, A. Instability of point defects in a two-dimensional nematic liquid crystal model. Ann Inst H Poincare C: Non Lin Anal 2016; 33: 1131-1152. · Zbl 1351.82110
[27] Majumdar, A, Wang, Y. Remarks on uniaxial solutions in the Landau-de Gennes theory. J Math Anal Appl 2018; 464(1): 328-353. · Zbl 1394.35366
[28] Canevari, G, Majumdar, A, Spicer, A. Order reconstruction for nematics on squares and hexagons: A Landau-de Gennes study. SIAM J Appl Math 2017; 77(1): 267-293. · Zbl 1371.35065
[29] Lamy, X. Bifurcation analysis in a frustrated nematic cell. J Nonlin Sci 2014; 24(6): 1197-1230. · Zbl 1316.76009
[30] Majumdar, A. Equilibrium order parameters of nematic liquid crystals in the Landau-de Gennes theory. Eur J Appl Math 2010; 21(2): 181-203. · Zbl 1253.82089
[31] Lewis, A. Defects in Liquid Crystals: Mathematical and Experimental Studies. PhD thesis, University of Oxford, 2015.
[32] Yao, X, Zhang, H, Chen, JZY. Topological defects in two-dimensional liquid crystals confined by a box. Phys Rev E 2018; 97(5): 052707.
[33] Nobili, M, Durand, G. Disorientation-induced disordering at a nematic-liquid-crystal-solid interface. Phys Rev A 1992; 46(10): R6174.
[34] Pim, A . The asymptotic analysis and numerical study of equilibria for small colloidal inclusions in the Oseen-Frank model of a liquid crystal. In preparation.
[35] Kelley, CT. Numerical methods for nonlinear equations. Acta Numerica 2018; 27: 207-287. · Zbl 1429.65108
[36] Cauchy, A. Méthode générale pour la résolution des systemes d’équations simultanées. C R Sci Paris 1847; 25(1847): 536-538.
[37] Han, Y, Majumdar, A, Zhang, L. A reduced study for nematic equilibria on two-dimensional polygons. arXiv preprint arXiv:1910.05740, 2019. · Zbl 1446.35204
[38] Majumdar, A, Robbins, JM, Zyskin, M. Elastic energy of liquid crystals in convex polyhedra. J Phys A Math Gen 2004; 37(44): L573. · Zbl 1064.58019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.