×

Transposition algebras. (English) Zbl 1482.17015

Author’s abstract: The symbiotic relationship between groups and algebras goes back at least to Sophus Lie, who introduced Lie algebras to support the study of Lie groups. Later the classification of finite dimensional, complex, semisimple Lie algebras was in turn reduced (primarily by Weyl) to the classification of finite groups generated by Euclidean reflections.
The topics discussed here had a similar start. Algebras were introduced to aid in the construction of finite simple groups, particularly those that are sporadic. These algebras then found a broader context, and there groups were reintroduced to aid in construction and classification.

MSC:

17A99 General nonassociative rings
17B69 Vertex operators; vertex operator algebras and related structures
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. Block, New simple Lie algebras of prime characteristic, Trans. Amer. Math. Soc., 89(1958), 421-449. · Zbl 0082.25104
[2] R. E. Borcherds,Vertex algebras,Kac-Moody algebras,and the Monster, Proc. Nat. Acad. Sci. U.S.A., 83 (1986), 3068-3071. · Zbl 0613.17012
[3] A. E. Brouwer, A. M. Cohen, H. Cuypers, J. I. Hall and E. Postma, Lie algebras, 2-groups and cotriangular spaces, Adv. Geom., 12 (2012), 1-17 · Zbl 1266.51006
[4] F. Buekenhout, La g´eom´etrie des groupes de Fischer, Free University of Brussels, unpublished notes, 1974.
[5] P. J. Cameron, J. M. Goethals and J. J. Seidel, The Krein condition, spherical designs, Norton algebras and permutation groups, Nederl. Akad. Wetensch. Indag. Math., 40 (1978), 196-206. · Zbl 0408.05016
[6] H. -Y. Chen and C. H. Lam, An explicit Majorana representation of the group 32: 2 of 3C-pure type, Pacific J. Math. 271 (2014), 25-51. · Zbl 1323.17020
[7] J. H. Conway, A simple construction for the Fischer-Griess monster group, Invent. Math., 79 (1985), 513-540. · Zbl 0564.20010
[8] H. Cuypers, Lie algebras and cotriangular spaces, Bull. Belg. Math. Soc. Simon Stevin, 12(2005), 209-221. · Zbl 1119.05018
[9] H. Cuypers, M. Horn, J. in ’t panhuis and S. Shpectorov, Lie algebras and 3-transpositions, J. Algebra, 368 (2012), 21-39. 9The 1107 3-transpositions (axes) have diagram with minimal eigenvalue −10 = −2/η, hence its Matsuo algebra is positive semi-definite. The positive definite quotient algebra has dimension
[10] H. Cuypers and J. I. Hall, The 3-transposition groups with trivial center, J. Algebra, 178(1995), 149-193. · Zbl 0840.20025
[11] B. Fischer, Finite groups generated by 3-transpositions I, Invent. Math., 13 (1971), 232-246. · Zbl 0232.20040
[12] I. B. Frenkel, J. Lepowsky and A. A. Meurman, A natural representation of the Fischer-Griess Monster with the modular function J as character, Proc. Nat. Acad. Sci. U.S.A., 81 (1984), 3256-3260. · Zbl 0543.20016
[13] I. B. Frenkel, J. Lepowsky and A. A. Meurman, “Vertex Operator Algebras and the Monster,” Pure and Applied Mathematics, 134, Academic Press, Inc., Boston, MA, · Zbl 0674.17001
[14] D. Frohardt, A trilinear form for the third Janko group, J. Algebra, 83 (1983), 349-379. · Zbl 0518.20012
[15] D. Frohardt, Toward the construction of an algebra for O’Nan’s group, “Proceedings of the Rutgers Group Theory Year, 1983-1984,” Cambridge Univ. Press, Cambridge, 1985, 107-110.
[16] R. L. Griess, Jr., A construction of F1as automorphisms of a 196,883-dimensional algebra, Proc. Nat. Acad. Sci. U.S.A., 78 (1981), 686-691.
[17] R. L. Griess, Jr., The friendly giant, Invent. Math., 69 (1982), 1-102. · Zbl 0498.20013
[18] R. L. Griess, Jr., “Twelve Sporadic Groups,” Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. · Zbl 0908.20007
[19] J. I. Hall, Graphs, geometry, 3-transpositions, and symplectic F2-transvection groups, Proc. London Math. Soc.(Series 3), 58 (1989), 89-111. · Zbl 0673.20015
[20] J. I. Hall, Some 3-transposition groups with normal 2-subgroups, Proc. London Math. Soc.(Series 3), 58 (1989), 112-136. · Zbl 0669.20024
[21] J. I. Hall, “Moufang Loops and Groups with Triality are Essentially the Same Thing,” Memoirs of the American Mathematical Society, to appear. · Zbl 1447.20002
[22] J. I. Hall, F. Rehren and S. Shpectorov, Universal axial algebras and a theorem of Sakuma, J. Algebra, 421 (2015), 394-424. · Zbl 1320.17015
[23] J. I. Hall, F. Rehren and S. Shpectorov, Primitive axial algebras of Jordan type, J. Algebra, 437 (2015), 79-115. · Zbl 1339.17019
[24] J. I. Hall, Y. Segev and S. Shpectorov, Miyamoto involutions in axial algebras of Jordan type half, Israeli J. Math., to appear. · Zbl 1432.17032
[25] J. I. Hall, Y. Segev and S. Shpectorov, On primitive axial algebras of Jordan type, submitted. · Zbl 1460.17005
[26] R. C. Hamelink, Lie algebras of characteristic 2, Trans. Amer. Math. Soc., 144 (1969), 217-233. · Zbl 0192.37401
[27] D. G. Higman, Finite permutation groups of rank 3, Math. Z., 86 (1964), 145-156. · Zbl 0122.03205
[28] A. A. Ivanov, “The Monster Group and Majorana Involutions,” Cambridge Tracts in Mathematics 176, Cambridge University Press, Cambridge, 2009. 186J. I. HALL[June · Zbl 1205.20014
[29] A. A. Ivanov, D. V. Pasechnik, ´A. Seress, S. Shpectorov, Majorana representations of the symmetric group of degree 4, J. Algebra, 324 (2010), 2432-2463. · Zbl 1257.20011
[30] N. Jacobson, “Structure and Representations of Jordan Algebras,” American Mathematical Society Colloquium Publications 39, American Mathematical Society, Providence, R. I., 1968. · Zbl 0218.17010
[31] I. Kaplansky, Some simple Lie algebras of characteristic 2, in:“Lie Algebras and Related Topics(New Brunswick, N. J., 1981),” Lecture Notes in Math. 933, Springer, BerlinNew York, 1982, 127-129.
[32] M. Kitazume and M. Miyamoto, 3-transposition automorphism groups of V OA “Groups and Combinatorics-in Memory of Michio Suzuki,” Adv. Stud. Pure Math., 32, Math. Soc. Japan, Tokyo, 2001, 315-324. · Zbl 1007.17021
[33] C. H. Lam and H. Yamauchi, On 3-transposition groups generated by σ-involutions associated to c = 4/5 Virasoro vectors, J. Algebra 416 (2014), 84-121. · Zbl 1312.17023
[34] C. H. Lam and H. Yamauchi, The Conway-Miyamoto correspondences for the Fischer 3-transposition groups, preprint, April 2016. · Zbl 1490.17036
[35] H. S. Li, Symmetric invariant bilinear forms on vertex operator algebras, J. Pure Appl. Algebra, 96 (1994), 279-297. · Zbl 0813.17020
[36] A. Matsuo, 3-transposition groups of symplectic type and vertex operator algebras (version 1), manuscript, November 2003. (available as arXiv. math/0311400v1)
[37] A. Matsuo, 3-transposition groups of symplectic type and vertex operator algebras, J. Math. Soc. Japan, 57 (2005), 639-649. · Zbl 1135.17305
[38] A. Matsuo and M. Matsuo, On a commutative nonassociative algebra associated with GL3(2), manuscript, August 1999.
[39] J. McLaughlin, Some subgroups of SLn(F2), Illinois J. Math., 13 (1969), 108-115. · Zbl 0179.04901
[40] M. Miyamoto, Griess algebras and conformal vectors in vertex operator algebras, J. Algebra, 179 (1996), 523-548. · Zbl 0964.17021
[41] S. Norton, On the group F i24, Geom. Ded., 25 (1988), 483-501. · Zbl 0636.20013
[42] F. Rehren, Linear idempotents in Matsuo algebras, Indiana Univ. Math. J., 65 (2016), 1713-1733. · Zbl 1397.17036
[43] F. Rehren, Fusion rules from root systems I: case An, preprint, 13 March 2014, (available as arXiv. math/1403. 3308).
[44] F. Rehren, Generalised dihedral subalgebras from the Monster, preprint, 10 October 2014, (available as arXiv. math/1510. 00640). · Zbl 1454.17020
[45] F. Rehren, “Axial Algebras,” Ph.D. Thesis, University of Birmingham, 28 February 2015, 156 pages. · Zbl 1339.17019
[46] A. J. E. Ryba, A natural invariant algebra for the Baby Monster group, J. Group Theory 10(2007), 55-69. 2019]TRANSPOSITION ALGEBRAS187 · Zbl 1228.20012
[47] S. Sakuma, 6-transposition property of τ -involutions of vertex operator algebras, Int. Math. Res. Not. IMRN2007, no. 9, Art. ID rnm 030. · Zbl 1138.17013
[48] L. L. Scott, Some properties of character products, American Mathematical Society Colloquium Publications, J. Algebra, 45 (1977), 259-265. · Zbl 0363.20006
[49] E. E. Shult, Groups, polar spaces and related structures, in: “Proceedings of the NATO Advanced Study Institute Held at Nijenrode Castle, Breukelen, 8-20 July 1974,” eds. : M. Hall, Jr., and J. H. van Lint, NATO Advanced Study Institutes Series, Series C: Mathematical and Physical Sciences 16, D. Reidel Publishing Co., Dordrecht-Boston, Mass., Mathematical Centre, Amsterdam, 1974.
[51] 2019]TRANSPOSITION ALGEBRAS185
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.