×

Finite-deformation second-order micromorphic theory and its relations to strain and stress gradient models. (English) Zbl 1482.74026

Summary: Germain’s general micromorphic theory of order \(n\) is extended to fully non-symmetric higher-order tensor degrees of freedom. An interpretation of the microdeformation kinematic variables as relaxed higher-order gradients of the displacement field is proposed. Dynamical balance laws and hyperelastic constitutive equations are derived within the finite deformation framework. Internal constraints are enforced to recover strain gradient theories of grade \(n\). An extension to finite deformations of a recently developed stress gradient continuum theory is then presented, together with its relation to the second-order micromorphic model. The linearization of the combination of stress and strain gradient models is then shown to deliver formulations related to Eringen’s and Aifantis’s well-known gradient models involving the Laplacians of stress and strain tensors. Finally, the structures of the dynamical equations are given for strain and stress gradient media, showing fundamental differences in the dynamical behaviour of these two classes of generalized continua.

MSC:

74A60 Micromechanical theories
74A05 Kinematics of deformation
74A10 Stress
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Hütter, G, Mühlich, U, Kuna, M. Micromorphic homogenization of a porous medium: Elastic behavior and quasi-brittle damage. Contin Mech Thermodyn 2015; 27: 1059-1072. · Zbl 1341.74141
[2] Madeo, A, Barbagallo, G, d’Agostino, MV, et al. First evidence of non-locality in real band-gap metamaterials: Determining parameters in the relaxed micromorphic model. Proc R Soc Lond A 2016; 472: 20160169. · Zbl 1371.82126
[3] Mindlin, R. Micro-structure in linear elasticity. Arch Rat Mech Anal 1964; 16: 51-78. · Zbl 0119.40302
[4] Eringen, A, Suhubi, E. Nonlinear theory of simple microelastic solids. Int J Eng Sci 1964; 2: 189-203, 389-404. · Zbl 0138.21202
[5] Germain, P. The method of virtual power in continuum mechanics. Part 2: Microstructure. SIAM J Appl Math 1973; 25: 556-575. · Zbl 0273.73061
[6] Eringen, A . Mechanics of micromorphic continua. In: Kröner, E (ed.) Mechanics of generalized continua. Berlin: Springer-Verlag, 18-35. · Zbl 0181.53802
[7] Eringen, A. Laws of micromorphic mechanics. Int J Eng Sci 1970; 8: 819-828. · Zbl 0219.73108
[8] Green, A, Rivlin, R. Multipolar continuum mechanics. Arch Rat Mech Anal 1964; 17: 113-147. · Zbl 0133.17604
[9] Mindlin, R. Second gradient of strain and surface-tension in linear elasticity. Int J Solid Struct 1965; 1: 417-438.
[10] Bleustein, J. A note on the boundary conditions of Toupin’s strain-gradient theory. Int J Solid Struct 1967; 3: 1053-1057.
[11] Madeo, A, Ghiba, I, Neff, P, et al. A new view on boundary conditions in the Grioli-Koiter-Mindlin-Toupin indeterminate couple stress model. Eur J Mech A/Solid 2016; 59: 294-322. · Zbl 1406.74035
[12] Broese, C, Tsakmakis, C, Beskos, D. Mindlin’s micro-structural and gradient elasticity theories and their thermodynamics. J Elast 2016; 125: 87-132. · Zbl 1348.74057
[13] Javili, A, dell’Isola, F, Steinmann, P. Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J Mech Phys Solid 2013; 61: 2381-2401. · Zbl 1294.74014
[14] Cordero, N, Forest, S, Busso, E. Second strain gradient elasticity of nano-objects. J Mech Phys Solid 2016; 97: 92-124.
[15] Dillard, T, Forest, S, Ienny, P. Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams. Eur J Mech A/Solid 2006; 25: 526-549. · Zbl 1094.74047
[16] Enakoutsa, K, Leblond, J. Numerical implementation and assessment of the GLPD micromorphic model of ductile rupture. Eur J Mech A/Solid 2009; 28: 445-460. · Zbl 1158.74461
[17] Ferretti, M, Madeo, A, dell’Isola, F, et al. Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory. Z Angew Math Phys 2014; 65: 587-612. · Zbl 1302.74008
[18] Madeo, A, Ferretti, M, dell’Isola, F, et al. Thick fibrous composite reinforcements behave as special second-gradient materials: Three-point bending of 3D interlocks. Z Angew Math Phys 2015; 66: 2041-2060. · Zbl 1329.74060
[19] Madeo, A, Barbagallo, G, D’Agostino, MV, et al. Continuum and discrete models for unbalanced woven fabrics. Int J Solid Struct 2016; 94-95: 263-284.
[20] Bergheau, J, Leblond, J, Perrin, G. A new numerical implementation of a second-gradient model for plastic porous solids, with an application to the simulation of ductile rupture tests. Comput Meth Appl Mech Eng 2014; 268: 105-125. · Zbl 1295.74098
[21] Reiher, JC, Giorgio, I, Bertram, A. Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity. Int J Eng Mech 2017; 143: 04016112-1-13.
[22] Forest, S, Cordero, N, Busso, E., First, vs. second gradient of strain theory for capillarity effects in an elastic fluid at small length scales. Comput Mater Sci 2011; 50: 1299-1304.
[23] Forest, S, Sab, K. Continuum stress gradient theory. Mech Res Commun 2012; 40: 16-25.
[24] Sab, K, Legoll, F, Forest, S. Stress gradient elasticity theory: Existence and uniqueness of solution. J Elast 2016; 123: 179-201. · Zbl 1339.35314
[25] Lebée, A, Sab, K. A bending-gradient model for thick plates, Part I: Theory. Int J Solid Struct 2011; 48: 2878-2888.
[26] Lebée, A, Sab, K. A bending-gradient model for thick plates, Part II: Closed-form solutions for cylindrical bending of laminates. Int J Solid Struct 2011; 48: 2889-2901.
[27] Polizzotto, C. Stress gradient versus strain gradient constitutive models within elasticity. Int J Solid Struct 2014; 51: 1809-1818.
[28] Polizzotto, C. A unifying variational framework for stress gradient and strain gradient elasticity theories. Eur J Mech A/Solid 2015; 49: 430-440. · Zbl 1406.74091
[29] Forest, S, Sievert, R. Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech 2003; 160: 71-111. · Zbl 1064.74009
[30] Forest, S, Sievert, R. Nonlinear 30 theories. Int J Solid Struct 2006; 43: 7224-7245. · Zbl 1102.74003
[31] Regueiro, R. On finite strain micromorphic elastoplasticity. Int J Solid Struct 2010; 47: 786-800. · Zbl 1193.74019
[32] Sansour, C, Skatulla, S, Zbib, H. A formulation for the micromorphic continuum at finite inelastic strains. Int J Solid Struct 2010; 47: 1546-1554. · Zbl 1194.74025
[33] Bertram, A. Finite gradient elasticity and plasticity: A constitutive mechanical framework. Contin Mech Thermodyn 2015; 27: 1039-1058. · Zbl 1341.74030
[34] Bertram, A. Finite gradient elasticity and plasticity: A constitutive thermodynamical framework. Contin Mech Thermodyn 2016; 28: 819-883. · Zbl 1365.74030
[35] Bertram, A, Glüge, R. Gradient materials with internal constraints. Math Mech Compl Syst 2016; 4: 1-15. · Zbl 1333.74011
[36] Maugin, GA. The method of virtual power in continuum mechanics: Application to coupled fields. Acta Mech 1980; 35: 1-70. · Zbl 0428.73095
[37] Green, AE, Rivlin, RS. The relation between director and multipolar theories in continuum mechanics. Z Angew Math Phys ZAMP 1967; 18: 208-218. · Zbl 0158.21306
[38] Green, A, Naghdi, P, Rivlin, R. Directors and multipolar displacements in continuum mechanics. Int J Eng Sci 1965; 2: 611-620. · Zbl 0131.21803
[39] Eringen, A. Microcontinuum field theories. New York, NY: Springer, 1999. · Zbl 0953.74002
[40] Germain, P. La méthode des puissances virtuelles en mécanique des milieux continus, première partie: Théorie du second gradient. J Méc 1973; 12: 235-274. · Zbl 0261.73003
[41] Liu, IS. Continuum mechanics. New York, NY: Springer, 2002. · Zbl 1058.74004
[42] Seppecher, P . Second gradient theory: Application to Cahn-Hilliard fluids. In: Maugin, G, Drouot, R, Sidoroff, F (eds.) Continuum thermomechanics: The art and science of modelling material behaviour, Paul Germain’s anniversary volume. Norwell, MA: Kluwer Academic Publishers, 379-388.
[43] Dell’Isola, F, Seppecher, P. The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. CR Acad Sci Par IIb 1995; 321: 303-308. · Zbl 0844.73006
[44] Dell’Isola, F, Seppecher, P, Madeo, A. How contact interactions may depend on the shape of Cauchy cuts in \(N\) th gradient continua: Approach “à la D’Alembert”. Zeitschrift für Angewandte Mathematik und Physik 2012; 63: 1119-1141. · Zbl 1330.76016
[45] Dell’Isola, F, Madeo, A, Seppecher, P. Cauchy tetrahedron argument applied to higher contact interactions. Arch Rat Mech Anal 2016; 219: 1305-1341. · Zbl 1395.74071
[46] Eringen, AC. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 1983; 54: 4703-4710.
[47] Forest, S, Aifantis, EC. Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua. Int J Solid Struct 2010; 47: 3367-3376. · Zbl 1203.74011
[48] Ru, C, Aifantis, E. A simple approach to solve boundary value problems in gradient elasticity. Acta Mech 1993; 101: 59-68. · Zbl 0783.73015
[49] Gutkin, MY, Aifantis, EC. Dislocations in the theory of gradient elasticity. Script Mater 1999; 40: 559-566.
[50] Aifantis, E. Update on a class of gradient theories. Mech Mater 2003; 35: 259-280.
[51] Tran, VP. Stochastic modeling of random heterogeneous materials. PhD Thesis, Université Paris Est, France, 2016.
[52] Auffray, N, Le Quang, H, He, Q. Matrix representations for 3D strain-gradient elasticity. J Mech Phys Solid 2013; 61: 1202-1223. · Zbl 1260.74012
[53] Olive, M, Auffray, N. Symmetry classes for even-order tensors. Math Mech Compl Syst 2013; 1: 177-210. · Zbl 1391.15089
[54] Metrikine, A. On causality of the gradient elasticity models. J Sound Vibr 2006; 297: 727-742. · Zbl 1243.74009
[55] Rosi, G, Auffray, N. Anisotropic and dispersive wave propagation within strain-gradient framework. Wav Mot 2016; 63: 120-134. · Zbl 1469.74030
[56] Mindlin, R. Elasticity, piezoelectricity and crystal lattice dynamics. J Elast 1972; 2: 217-282.
[57] Askes, H, Aifantis, EC. Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solid Struct 2011; 48: 1962-1990.
[58] Engelbrecht, J, Berezovski, A, Pastrone, F, et al. Waves in microstructured materials and dispersion. Phil Mag 2005; 85: 4127-4141.
[59] Askes, H, Wang, B, Bennett, T. Element size and time step selection procedures for the numerical analysis of elasticity with higher-order inertia. J Sound Vib 2008; 314: 650-656.
[60] Askes, H, Metrikine, AV, Pichugin, AV, et al. Four simplified gradient elasticity models for the simulation of dispersive wave propagation. Phil Mag 2008; 88: 3415-3443.
[61] Papargyri-Beskou, S, Polyzos, D, Beskos, D. Wave dispersion in gradient elastic solids and structures: A unified treatment. Int J Solid Struct 2009; 46: 3751-3759. · Zbl 1176.74101
[62] Berezovski, A. Nonlinear dispersive wave equations for microstructured solids. Proc Eston Acad Sci 2015; 64: 203-211.
[63] Madeo, A, Neff, P, Ghiba, ID, et al. Wave propagation in relaxed micromorphic continua: Modeling metamaterials with frequency band-gaps. Contin Mech Thermodyn 2014; 27: 551-570. · Zbl 1341.74085
[64] Forest, S, Trinh, DK. Generalized continua and non-homogeneous boundary conditions in homogenization methods. ZAMM 2011; 91: 90-109. · Zbl 1370.74130
[65] Trinh, DK, Jänicke, R, Auffray, N, et al. Evaluation of generalized continuum substitution models for heterogeneous materials. Int J Multisc Comput Eng 2012; 10: 527-549.
[66] Jänicke, R, Steeb, H. Minimal loading conditions for higher order numerical homogenisation schemes. Arch Appl Mech 2012; 82: 1075-1088. · Zbl 1293.74358
[67] Nassar, H, He, QC, Auffray, N. A generalized theory of elastodynamic homogenization for periodic media. Int J Solid Struct 2016; 84: 139-146.
[68] Reda, H, Goda, I, Ganghoffer, J, et al. Dynamical analysis of homogenized second gradient anisotropic media for textile composite structures and analysis of size effects. Compos Struct 2017; 161: 540-551.
[69] Hütter, G. Homogenization of a Cauchy continuum towards a micromorphic continuum. J Mech Phys Solid 2017; 99: 394-408.
[70] Hütter, G. A micromechanical gradient extension of Gurson’s model of ductile damage within the theory of microdilatational media. Int J Solid Struct 2017; 110-111: 15-23.
[71] Poh, L. Scale transition of a higher order plasticity model - A consistent homogenization theory from meso to macro. J Mech Phys Solid 2013; 61: 2692-2710.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.