×

Reduced algebraic conditions for plane or axial tensorial symmetries. (English) Zbl 1482.74050

Summary: In this article, we formulate necessary and sufficient polynomial equations for the existence of a symmetry plane or an order-two axial symmetry for a totally symmetric tensor of order \(n \geq 1\). These conditions are effective and of degree \(n\) (the tensor’s order) in the components of the normal to the plane (or the direction of the axial symmetry). These results are then extended to obtain necessary and sufficient polynomial conditions for the existence of such symmetries for an elasticity tensor, a piezo-electricity tensor or a piezo-magnetism pseudo-tensor.

MSC:

74E10 Anisotropy in solid mechanics
74B05 Classical linear elasticity
74F15 Electromagnetic effects in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv HAL

References:

[1] Chadwick, P, Vianello, M, Cowin, S. A new proof that the number of linear elastic symmetries is eight. J Mech Phys Solids 2001; 49: 2471-2492. · Zbl 1017.74009
[2] Norris, AN. On the acoustic determination of the elastic moduli of anisotropic solids and acoustic conditions for the existence of symmetry planes. Q J Mech Appl Math 1989; 42(3): 413-426. · Zbl 0724.73029
[3] Geymonat, G, Gilormini, P. On the existence of longitudinal plane waves in general elastic anisotropic media. J Elast 1999; 54: 253-266. · Zbl 0949.74031
[4] Golubitsky, M, Stewart, I, Schaeffer, DG. Singularities and groups in bifurcation theory. vol. II (Applied Mathematical Sciences, vol. 69). New York: Springer-Verlag, 1988. · Zbl 0691.58003
[5] Fulton, W, Harris, J. Representation theory: a first course. vol. 129. New York: Springer Science & Business Media, 2013. · Zbl 0744.22001
[6] Forte, S, Vianello, M. Symmetry classes for elasticity tensors. J Elast 1996; 43(2): 81-108. · Zbl 0876.73008
[7] Francois, M, Berthaud, Y, Geymonat, G. Determination of the symmetries of an experimentally determined stiffness tensor: application to acoustic measurements. Int J Solids Struct 1998; 35: 4091-4106. · Zbl 0921.73013
[8] Khatkevich, A. The acoustic axis in crystals. Sov Phys Crystallogr 1962; 7: 601-604. · Zbl 0127.23306
[9] Fedorov, FL. Theory of elastic waves in crystals. New York: Plenum Press, 1968.
[10] Boulanger, P, Hayes, M. Acoustic axes for elastic waves in crystals: theory and applications. Proc R Soc London 1998; 454: 2323-2346. · Zbl 0921.73099
[11] Auld, B. Wave propagation and resonance in piezoelectric materials. J Acoust Soc Am 1981; 70(6): 1577-1585.
[12] Bin, W, Jiangong, Y, Cunfu, H. Wave propagation in non-homogeneous magneto-electro-elastic plates. J Sound Vib 2008; 317(1-2): 250-264.
[13] Pang, Y, Liu, J, Wang, Y, et al. Wave propagation in piezoelectric/piezomagnetic layered periodic composites. Acta Mech Solida Sin 2008; 21(6): 483-490.
[14] Stippes, M. Steady state waves in anisotropic media. In: Annual Meeting of the Society of Engineering Science, 1965.
[15] Kolodner, I. Existence of longitudinal waves in anisotropic media. J Acoust Soc Am 1966; 40(3): 730-731.
[16] Cowin, S, Mehrabadi, M. On the identification of material symmetry for anisotropic elastic materials. Q J Mech Appl Math 1987; 40: 451-476. · Zbl 0625.73014
[17] Cowin, S. Properties of the anisotropic elasticity tensor. Q J Mech Appl Math 1989; 42: 249-266. · Zbl 0682.73011
[18] Jaric, J. On the condition for the existence of a plane of symmetry for anisotropic material. Mech Res Commun 1994; 21(2): 153-174. · Zbl 0801.73011
[19] Ting, T. Generalized Cowin-Mehrabadi theorems and a direct proof that the number of linear elastic symmetries is eight. Int J Solids Struct 2003; 40: 7129-7142. · Zbl 1073.74011
[20] Baerheim, R. Harmonic decomposition of the anisotropic elasticity tensor. Q J Mech Appl Math 1993; 46(3): 391-418. · Zbl 0783.73010
[21] Olive, M, Kolev, B, Desmorat, R, et al. Harmonic factorization and reconstruction of the elasticity tensor. J Elast 2018; 101: 132-167. · Zbl 1393.74025
[22] Onat, ET. Effective properties of elastic materials that contain penny shaped voids. Int J Eng Sci 1984; 22: 1013-1021. · Zbl 0564.73089
[23] Oda, M. Fabric tensor for discontinuous geological materials. Soils Found 1982; 22(4): 96-108.
[24] Jemiolo, S, Telega, J. Fabric tensors in bone mechanics. Eng Trans 1984; 46(1).
[25] Caccuri, V, Desmorat, R, Cormier, J. Tensorial nature of \(\gamma \prime \)-rafting evolution in nickel-based single crystal superalloys. Acta Mater 2018; 158: 138-154.
[26] Borisenko, AI , et al. Vector and tensor analysis with applications. Englewood Cliffs: Prentice-Hall, 1968.
[27] Gorodentsev, A. Algebra II: textbook for students of mathematics. New York: Springer, 2017. · Zbl 1365.13001
[28] Schouten, JA. Tensor analysis for physicists. Oxford: Clarendon Press, 1951. · Zbl 0044.38302
[29] Spencer, A. A note on the decomposition of tensors into traceless symmetric tensors. Int J Eng Sci 1970; 8: 475-481. · Zbl 0205.05103
[30] Jerphagnon, J, Chemla, D, Bonneville, R. The description of the physical properties of condensed matter using irreducible tensors. Adv Phys 1978; 27(4): 609-650.
[31] Olive, M, Kolev, B, Desmorat, R, et al. Characterization of the symmetry class of an elasticity tensor using polynomial covariants. arXiv 2018; arXiv:180708996. · Zbl 1393.74025
[32] Rahmoun, J, Kondo, D, Millet, O. A 3D fourth order fabric tensor approach of anisotropy in granular media. Comput Mater Sci 2009; 46(4): 869-880.
[33] Radjai, F, Delenne, JY, Azéma, E, et al. Fabric evolution and accessible geometrical states in granular materials. Granular Matter 2012; 14(2): 259-264.
[34] Li, X, Dafalias, Y. Dissipation consistent fabric tensor definition from DEM to continuum for granular media. J Mech Phys Solids 2015; 78: 141-153. · Zbl 1349.74047
[35] Kruyt, N, Rothenburg, L. A micromechanical study of dilatancy of granular materials. J Mech Phys Solids 2016; 95: 411-427.
[36] Ladevèze, P. Sur une théorie de l’endommagement anisotrope. Technical report, Internal report 34 of LMT-Cachan, France, 1983.
[37] Ladevèze, P. Modeling and simulation of the mechanical behavior of CMCs. High Temp Ceram Matrix Compos 1995; 47: 53-63.
[38] Kanatani, K. Distribution of directional data and fabric tensors. Int J Eng Sci 1984; 22: 149-164. · Zbl 0586.73004
[39] Lubarda, V, Krajcinovic, D. Damage tensors and the crack density distribution. Int J Solids Struct 1993; 30: 2859-2877. · Zbl 0782.73058
[40] Kachanov, M. Elastic solids with many cracks and related problems. Adv Appl Mech 1993; 30: 259-445. · Zbl 0803.73057
[41] Tikhomirov, D, Niekamp, R, Stein, E. On three-dimensional microcrack density distribution. Z Angew Math Mech 2001; 81(1): 3-16. · Zbl 1047.74005
[42] Cormery, F, Welemane, H. A stress-based macroscopic approach for microcracks unilateral effect. Comput Mater Sci 2010; 47: 727-738.
[43] Desmorat, R, Mattiello, A, Cormier, J. A tensorial thermodynamic framework to account for the \(\gamma \prime\) rafting in nickel-based single crystal superalloys. Int J Plast 2017; 95: 43-81.
[44] Kamaraj, M, Serin, K, Kolbe, M, et al. Influence of stress state on the kinetics of \(\gamma \)-channel widening during high temperature and low stress creep of the single crystal superalloy CMSX-4. Mater Sci Eng A 2001; 319-321: 796-799.
[45] Ichitsubo, T, Koumoto, D, Hirao, M, et al. Rafting mechanism for Ni-base superalloy under external stress: elastic or elasto-plastic phenomena? Acta Mater 2003; 51(14): 4033-4044.
[46] Backus, G. A geometrical picture of anisotropic elastic tensors. Rev Geophys 1970; 8(3): 633-671.
[47] Eringen, A, Maugin, G. Electrodynamics of continua. vols I and II. New York: Springer-Verlag, 1990.
[48] Geymonat, G, Weller, T. Symmetry classes of piezoelectric solids. CR Acad Sci, Ser I 2002; 335: 847-852. · Zbl 1020.74015
[49] Kiral, E, Eringen, AC. Constitutive equations of nonlinear electromagnetic-elastic crystals. New York: Springer-Verlag, 1990.
[50] Weller, T, Geymonat, G. Piezomagnetic tensors symmetries: an unifying tentative approach. Rotterdam: AA Balkema Publishers, 2004. · Zbl 1096.74020
[51] Gessel, I, Viennot, G. Binomial determinants, paths, and hook length formulae. Adv Math 1985; 58(3): 300-321. · Zbl 0579.05004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.