×

On LMI conditions to design robust static output feedback controller for continuous-time linear systems subject to norm-bounded uncertainties. (English) Zbl 1483.93193

Summary: This paper addresses the problem of static output feedback (SOF) stabilisation for continuous-time linear systems subject to norm-bounded parameter uncertainties using the linear matrix inequality (LMI) approach. Usually, this issue leads to the feasibility of a bilinear matrix inequality (BMI), which is difficult to linearise to get non-conservative LMI conditions. We present first, in this paper, some background results on the SOF controller design and that are found to be extended to the case of norm-bounded uncertainties. We show that some restrictions on the feasibility of these results should be guaranteed. Moreover, by means of some technical lemmas, we transform the BMI into a new LMI with a line search over a scalar variable. An enhanced and less conservative LMI condition with a line search over two scalar variables is also developed. Furthermore, a simplified version of each LMI condition without a priori fixed parameters is also presented. An extensive portfolio of numerical examples is presented in order to evaluate the conservativeness and to show the superiority of the proposed design method to the background results.

MSC:

93B52 Feedback control
93C41 Control/observation systems with incomplete information
93C05 Linear systems in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agulhari, C. M.; Oliveira, R. C. L. F.; Peres, P. L. D., LMI relaxations for reduced-order robust \(####\) control of continuous-time uncertain linear systems, IEEE Transactions on Automatic Control, 57, 6, 1532-1537 (2012) · Zbl 1369.93471 · doi:10.1109/TAC.2011.2174693
[2] Apkarian, P.; Tuan, H. D.; Bernussou, J., Continuous-time analysis, eigenstructure assignment, and \(####\) synthesis with enhanced linear matrix inequalities (LMI) characterizations, IEEE Transactions on Automatic Control, 46, 12, 1941-1946 (2001) · Zbl 1003.93016 · doi:10.1109/9.975496
[3] Bedioui, N.; Houimli, R.; Besbes, M., Simultaneous sensor and actuator fault estimation for continuous-time polytopic LPV system, International Journal of Systems Science, 50, 6, 1290-1302 (2019) · Zbl 1483.93264 · doi:10.1080/00207721.2019.1599078
[4] Boyd, S.; El-Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in system and control theory, 15 (1994), Society for Industrial and Applied Mathematics (SIAM) · Zbl 0816.93004
[5] Cao, Y. Y.; Lam, J.; Sun, Y. X., Static output feedback stabilization: An ILMI approach, Automatica, 34, 12, 1641-1645 (1998) · Zbl 0937.93039 · doi:10.1016/S0005-1098(98)80021-6
[6] Chaib Draa, K.; Zemouche, A.; Alma, M.; Voos, H.; Darouach, M., A discrete-time nonlinear state observer for the anaerobic digestion process, International Journal of Robust and Nonlinear Control, 29, 5, 1279-1301 (2019) · Zbl 1410.93027 · doi:10.1002/rnc.4434
[7] Chen, P. C.; Chang, K. Y.; Jeng, Y. F.; Chang, W. J., The study on the convex and LMI conditions for static output feedback stabilization, Journal of Marine Science and Technology, 12, 3, 171-174 (2004)
[8] Chen, W. H.; Yang, W.; Lu, X., Impulsive observer-based stabilisation of uncertain linear systems, IET Control Theory and Applications, 8, 3, 149-159 (2014) · doi:10.1049/iet-cta.2012.0998
[9] Crusius, C. A. R.; Trofino, A., Sufficient LMI conditions for output feedback control problems, IEEE Transactions on Automatic Control, 44, 5, 1053-1057 (1999) · Zbl 0956.93028 · doi:10.1109/9.763227
[10] Dong, J.; Yang, G. H., Static output feedback control synthesis for linear systems with time-invariant parametric uncertainties, IEEE Transactions on Automatic Control, 52, 10, 1930-1936 (2007) · Zbl 1366.93460 · doi:10.1109/TAC.2007.906227
[11] Dong, J.; Yang, G. H., Robust static output feedback control synthesis for linear continuous systems with polytopic uncertainties, Automatica, 49, 6, 1821-1829 (2013) · Zbl 1360.93244 · doi:10.1016/j.automatica.2013.02.047
[12] Ekramian, M., Static output feedback problem for Lipschitz nonlinear systems, Journal of the Franklin Institute, 357, 3, 1457-1472 (2020) · Zbl 1430.93163 · doi:10.1016/j.jfranklin.2019.10.031
[13] El Ghaoui, L.; Oustry, F.; AitRami, M., A cone complementarity linearization algorithm for static output-feedback and related problems, IEEE Transactions on Automatic Control, 42, 8, 1171-1176 (1997) · Zbl 0887.93017 · doi:10.1109/9.618250
[14] El Haiek, B.; El Aiss, H.; Hmamed, A.; El Hajjaji, A.; El Houssaine, T., New approach to robust observer-based control of one-sided Lipschitz non-linear systems, IET Control Theory & Applications, 13, 3, 333-342 (2019) · Zbl 1434.93026 · doi:10.1049/iet-cta.2018.5389
[15] Elloumi, S.; Belhouane, M. M.; Braiek, N. B., Observer-based controller for nonlinear analytical systems, International Journal of Systems Science, 47, 8, 1783-1790 (2016) · Zbl 1333.93055 · doi:10.1080/00207721.2014.951715
[16] Feng, Z. Y.; She, J.; Xu, L., A brief review and insights into matrix inequalities for \(####\) static-output-feedback control and a local optimal solution A brief review and insights into matrix inequalities for \(####\) static-output-feedback control and a local optimal solution, International Journal of Systems Science, 50, 12, 2292-2305 (2019) · Zbl 1483.93127 · doi:10.1080/00207721.2019.1654008
[17] Gritli, H., & Belghith, S. (2018a, June 12-15). New LMI conditions for static output feedback control of continuous-time linear systems with parametric uncertainties. European Control Conference (ECC), Limassol, Cyprus (pp. 527-532). IEEE. doi:10.23919/ECC.2018.8550597.
[18] Gritli, H.; Belghith, S., Robust feedback control of the underactuated Inertia Wheel Inverted Pendulum under parametric uncertainties and subject to external disturbances: LMI formulation, Journal of The Franklin Institute, 355, 18, 9150-9191 (2018) · Zbl 1404.93026 · doi:10.1016/j.jfranklin.2017.01.035
[19] Hilhorst, G.; Pipeleers, G.; Michiels, W.; Swevers, J., Sufficient LMI conditions for reduced-order multi-objective \(####/####\) control of LTI systems, European Journal of Control, 23, 17-25 (2015) · Zbl 1360.93217 · doi:10.1016/j.ejcon.2015.01.007
[20] Huong, D. C.; Huynh, V. T.; Trinh, H., Integral outputs-based robust state observers design for time-delay systems, SIAM Journal on Control and Optimization, 57, 3, 2214-2239 (2019) · Zbl 1421.93041 · doi:10.1137/18M1224210
[21] Jiang, W.; Wang, H.; Lu, J.; Cai, G.; Qin, W., Mixed-objective robust dynamic output feedback controller synthesis for continuous-time polytopic LPV systems, Asian Journal of Control, 19, 3, 1046-1059 (2017) · Zbl 1367.93259 · doi:10.1002/asjc.1440
[22] Kheloufi, H.; Zemouche, A.; Bedouhene, F.; Boutayeb, M., On LMI conditions to design observer-based controllers for linear systems with parameter uncertainties, Automatica, 49, 12, 3700-3704 (2013) · Zbl 1315.93024 · doi:10.1016/j.automatica.2013.09.046
[23] Kheloufi, H.; Zemouche, A.; Bedouhene, F.; Souley-Ali, H., A robust \(####\) observer-based stabilization method for systems with uncertain parameters and Lipschitz nonlinearities, International Journal of Robust and Nonlinear Control, 26, 9, 1962-1979 (2016) · Zbl 1342.93091 · doi:10.1002/rnc.3391
[24] Kohan-Sedgh, P.; Khayatian, A.; Asemani, M. H., Conservatism reduction in simultaneous output feedback stabilisation of linear systems, IET Control Theory & Applications, 10, 17, 2243-2250 (2016) · doi:10.1049/iet-cta.2016.0618
[25] Lee, D. H.; Joo, Y. H.; Kim, H. J., A proposition of iterative LMI method for static output feedback control of continuous-time LTI systems, International Journal of Control, Automation and Systems, 14, 3, 666-672 (201601) · doi:10.1007/s12555-015-0023-1
[26] Li, X.; Gao, H., A heuristic approach to static output-feedback controller synthesis with restricted frequency-domain specifications, IEEE Transactions on Automatic Control, 59, 4, 1008-1014 (2014) · Zbl 1360.93557 · doi:10.1109/TAC.2013.2281472
[27] Lien, C. H., Robust observer-based control of systems with state perturbations via LMI approach, IEEE Transactions on Automatic Control, 49, 8, 1365-1370 (2004) · Zbl 1365.93450 · doi:10.1109/TAC.2004.832660
[28] Lo, J. C.; Liu, J. W., Polynomial static output feedback H-∞ control via homogeneous Lyapunov functions, International Journal of Robust and Nonlinear Control, 29, 6, 1639-1659 (2019) · Zbl 1416.93068 · doi:10.1002/rnc.4451
[29] Nguyen, A. T.; Chevrel, P.; Claveau, F., Gain-scheduled static output feedback control for saturated LPV systems with bounded parameter variations, Automatica, 89, 420-424 (2018) · Zbl 1388.93043 · doi:10.1016/j.automatica.2017.12.027
[30] Nguyen, C. M.; Pathirana, P. N.; Trinh, H., Robust observer design for uncertain one-sided Lipschitz systems with disturbances, International Journal of Robust and Nonlinear Control, 28, 4, 1366-1380 (2018) · Zbl 1390.93177 · doi:10.1002/rnc.3960
[31] Park, C-e.; Kwon, N. K.; Park, P. (2018)
[32] Peaucelle, D., & Arzelier, D. (2001, Sepember). An efficient numerical solution for H2 static output feedback synthesis. In 2001 European control conference (ECC) (pp. 3800-3805).
[33] Peretz, Y.; Merzbach, O.; Moyall, S., On a new generalised LMI condition and randomised algorithm for robust stabilisation via static-output-feedback, International Journal of Systems Science, 51, 1, 61-71 (2020) · Zbl 1483.93512 · doi:10.1080/00207721.2019.1692955
[34] Peretz, Y.; Wu, W., A randomised algorithm for computing static-output-feedbacks for large-scale systems, International Journal of Systems Science, 50, 16, 2898-2917 (2019) · Zbl 1485.93034 · doi:10.1080/00207721.2019.1691280
[35] Petersen, I. R.; Tempo, R., Robust control of uncertain systems: Classical results and recent developments, Automatica, 50, 5, 1315-1335 (2014) · Zbl 1296.93048 · doi:10.1016/j.automatica.2014.02.042
[36] Sadabadi, M. S., & Karimi, A. (2015, July 1-3). Fixed-order control of LTI systems subject to polytopic uncertainty via the concept of strictly positive realness. American Control Conference (ACC), Chicago, IL (pp. 2882-2887). IEEE. doi:10.1109/ACC.2015.7171172
[37] Sadabadi, M. S.; Peaucelle, D., From static output feedback to structured robust static output feedback: A survey, Annual Reviews in Control, 42, 11-26 (2016) · doi:10.1016/j.arcontrol.2016.09.014
[38] Safonov, M. G., Origins of robust control: Early history and future speculations, Annual Reviews in Control, 36, 2, 173-181 (2012) · doi:10.1016/j.arcontrol.2012.09.001
[39] Shen, J.; Lam, J., On static output-feedback stabilization for multi-input multi-output positive systems, International Journal of Robust and Nonlinear Control, 25, 16, 3154-3162 (2015) · Zbl 1327.93318 · doi:10.1002/rnc.3256
[40] Shu, Z.; Lam, J., An augmented system approach to static output-feedback stabilization with H∞ performance for continuous-time plants, International Journal of Robust and Nonlinear Control, 19, 7, 768-785 (2009) · Zbl 1166.93363 · doi:10.1002/rnc.1348
[41] Siami, A.; Karimi, H. R.; Cigada, A., Static output-feedback H∞ control design for a 5 degree-of-freedom isolator under physical constraints and restricted frequency domain, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 232, 2, 195-208 (2018) · doi:10.1177/0954405416640172
[42] Syrmos, V. L.; Abdallah, C. T.; Dorato, P.; Grigoriadis, K., Static output feedback: A survey, Automatica, 33, 2, 125-137 (1997) · Zbl 0872.93036 · doi:10.1016/S0005-1098(96)00141-0
[43] Wang, C.; Huang, T., Static output feedback control for positive linear continuous-time systems, International Journal of Robust and Nonlinear Control, 23, 14, 1537-1544 (2013) · Zbl 1286.93080 · doi:10.1002/rnc.2836
[44] Wang, Y.; Rajamani, R.; Zemouche, A., Sequential LMI approach for the design of a BMI-based robust observer state feedback controller with nonlinear uncertainties, International Journal of Robust and Nonlinear Control, 28, 4, 1246-1260 (2018) · Zbl 1390.93271 · doi:10.1002/rnc.3948
[45] Wu, H. N., An ILMI approach to robust H2 static output feedback fuzzy control for uncertain discrete-time nonlinear systems, Automatica, 44, 9, 2333-2339 (2008) · Zbl 1153.93442 · doi:10.1016/j.automatica.2008.01.002
[46] Yu, J. T., A new static output feedback approach to the suboptimal mixed \(H2/H####\) problem, International Journal of Robust and Nonlinear Control, 14, 12, 1023-1034 (2004) · Zbl 1057.93015 · doi:10.1002/rnc.930
[47] Zecevic, A. I.; Siljak, D. D., Design of robust static output feedback for large-scale systems, IEEE Transactions on Automatic Control, 49, 11, 2040-2044 (2004) · Zbl 1365.93028 · doi:10.1109/TAC.2004.837542
[48] Zemouche, A.; Rajamani, R.; Kheloufi, H.; Bedouhene, F., Robust observer-based stabilization of Lipschitz nonlinear uncertain systems via LMIs: Discussions and new design procedure, International Journal of Robust and Nonlinear Control, 27, 11, 1915-1939 (2017) · Zbl 1366.93596 · doi:10.1002/rnc.3644
[49] Zemouche, A., Zerrougui, M., Boulkroune, B., Bedouhene, F., Souley-Ali, H., & Zasadzinski, M. (2016, June 29-July 1). \(####\) observer-based stabilization for Lipschitz nonlinear systems. European Control Conference (ECC), Aalborg, Denmark (pp. 2017-2022). IEEE. doi:10.1109/ECC.2016.7810588
[50] Zhai, J.; Karimi, H. R., Global output feedback control for a class of nonlinear systems with unknown homogenous growth condition, International Journal of Robust and Nonlinear Control, 29, 7, 2082-2095 (2019) · Zbl 1458.93091 · doi:10.1002/rnc.4475
[51] Zhai, J.; Karimi, H. R., Universal adaptive control for uncertain nonlinear systems via output feedback, Information Sciences, 500, 140-155 (2019) · Zbl 1454.93145 · doi:10.1016/j.ins.2019.05.087
[52] Zhang, X.; Hu, J.; Long, L.; Zhang, W., Observer-based robust exponential stabilization for linear systems with parameter uncertainties, International Journal of Dynamics and Control (2020) · doi:10.1007/s40435-020-00635-w
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.