Ardjouni, Abdelouaheb Positive solutions for nonlinear Hadamard fractional differential equations with integral boundary conditions. (English) Zbl 1484.34080 AIMS Math. 4, No. 4, 1101-1113 (2019). Summary: In this paper, we prove the existence and uniqueness of a positive solution of nonlinear Hadamard fractional differential equations with integral boundary conditions. In the process we employ the Schauder and Banach fixed point theorems and the method of upper and lower solutions to show the existence and uniqueness of a positive solution. Finally, an example is given to illustrate our results. Cited in 14 Documents MSC: 34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations 34A08 Fractional ordinary differential equations 34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations Keywords:fractional differential equations; positive solutions; upper and lower solutions; existence; uniqueness; fixed point theorems PDF BibTeX XML Cite \textit{A. Ardjouni}, AIMS Math. 4, No. 4, 1101--1113 (2019; Zbl 1484.34080) Full Text: DOI References: [1] S. Zhang, em>The existence of a positive solution for a nonlinear fractional differential equation</em, J. Math. Anal. Appl., 252, 804-812 (2000) · Zbl 0972.34004 [2] Z. Bai; H. Lü, em>Positive solutions for boundary value problem of nonlinear fractional differential equation</em, J. Math. Anal. Appl., 311, 495-505 (2005) · Zbl 1079.34048 [3] M. Matar, <em>On existence of positive solution for initial value problem of nonlinear fractional differential equations of order</em> 1 < α ≤ 2, Acta Mathematica Universitatis Comenianae, 84 (2015), 51-57. · Zbl 1340.34031 [4] M. Xu; Z. Han, em>Positive solutions for integral boundary value problem of two-term fractional differential equations</em, Bound. Value Probl., 2018 (2018) · Zbl 1499.34192 [5] M. Benchohra; J. E. Lazreg, em>Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative</em, Studia Universitatis Babes-Bolyai Matematica, 62, 27-38 (2017) · Zbl 1399.34010 [6] B. Ahmad and S. K. Ntouyas, em>Existence and uniqueness of solutions for Caputo-Hadamard sequential fractional order neutral functional differential equations</em, Electronic Journal of Differential Equations, 2017, 1-11 (2017) · Zbl 1360.34159 [7] Z. Bai; T. T. Qiu, em>Existence of positive solution for singular fractional differential equation</em, Appl. Math. Comput., 215, 2761-2767 (2009) · Zbl 1185.34004 [8] H. Boulares; A. Ardjouni; Y. Laskri, em>Positive solutions for nonlinear fractional differential equations</em, Positivity, 21, 1201-1212 (2017) · Zbl 1377.26006 [9] D. Delbosco; L. Rodino, em>Existence and uniqueness for a nonlinear fractional differential equation</em, J. Math. Anal. Appl., 204, 609-625 (1996) · Zbl 0881.34005 [10] E. Kaufmann; E. Mboumi, em>Positive solutions of a boundary value problem for a nonlinear fractional differential equation</em, Electron. J. Qual.Theo., 2008, 1-11 (2008) · Zbl 1183.34007 [11] C. Kou; H. Zhou; Y. Yan, em>Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis</em, Nonlinear Anal-Theor, 74, 5975-5986 (2011) · Zbl 1235.34022 [12] C. Wang; R. Wang; S. Wang, t al. <em>Positive solution of singular boundary value problem for a nonlinear fractional differential equation</em, Bound. Value Probl., 2011 (2011) · Zbl 1219.34010 [13] C. Wang; H. Zhang; S. Wang, em>Positive solution of a nonlinear fractional differential equation involving Caputo derivative</em, Discrete Dyn. Nat. Soc., 2012 (2012) · Zbl 1248.34006 [14] M. Xu; S. Sun, em>Positivity for integral boundary value problems of fractional differential equations with two nonlinear terms</em, J. Appl. Math.Comput., 59, 271-283 (2019) · Zbl 1422.34071 [15] S. Zhang, em>Existence results of positive solutions to boundary value problem for fractional differential equation</em, Positivity, 13, 583-599 (2009) · Zbl 1202.26018 [16] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, <em>Theory and applications of fractional differential equations</em>, Elsevier, 2006. [17] K. S. Miller, B. Ross, <em>An introduction to the fractional calculus and fractional differential equations</em>, Wiley, New York, 1993. · Zbl 0789.26002 [18] I. Podlubny, <em>Fractional differential equations</em>, Academic Press,San Diego, 1999. · Zbl 0924.34008 [19] A. Jannelli; M. Ruggieri and M. P. Speciale, em>Analytical and numerical solutions of time and space fractional advection-diffusion-reaction equation</em, Commun. Nonlinear Sci., 70, 89-101 (2019) · Zbl 1464.35396 [20] A. Jannelli; M. Ruggieri and M. P. Speciale, em>Exact and numerical solutions of time-fractional advection-diffusion equation with a nonlinear source term by means of the Lie symmetries</em, Nonlinear Dynamics, 92, 543-555 (2018) · Zbl 1398.34019 [21] D. R. Smart, <em>Fixed point theorems</em>, Cambridge Uni. Press, Cambridge, 1980. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.