Brookes, Matthew D. G. K. Congruences on the partial automorphism monoid of a free group action. (English) Zbl 1485.20139 Int. J. Algebra Comput. 31, No. 6, 1147-1176 (2021). Here, congruences of the the partial automorphism monoid of a finite rank free group action are studied and their description using a Rees congruence are obtained, an idempotent separating congruence and a congruence on a principal factor. This allows to derive upper and lower bounds for the number of congruences. Reviewer: Jaak Henno (Tallinn) Cited in 3 Documents MSC: 20M20 Semigroups of transformations, relations, partitions, etc. 08A30 Subalgebras, congruence relations 16W22 Actions of groups and semigroups; invariant theory (associative rings and algebras) 20M18 Inverse semigroups 20M10 General structure theory for semigroups Keywords:free group action; partial automorphism monoid; congruences; subgroups of direct products × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Araújo, J., Bentz, W. and Gomes, G. M., Congruences on direct products of transformation and matrix monoids, Semigroup Forum97(3) (2018) 384-416. · Zbl 1467.20084 [2] Bauer, K., Sen, D. and Zvengrowski, P., A generalized Goursat lemma, Tatra Mt. Math. Publ.64(1) (2015) 1-19. · Zbl 1396.20027 [3] East, J., Mitchell, J. D., Ruškuc, N. and Torpey, M., Congruence lattices of finite diagram monoids, Adv. Math.333 (2018) 931-1003. · Zbl 1400.20060 [4] Fountain, J. and Lewin, A., Products of idempotent endomorphisms of an independence algebra of infinite rank, Math. Proc. Cambridge Philos. Soc.114(2) (1993) 303-319. · Zbl 0819.20070 [5] Ganyushkin, O. and Mazorchuk, V., Classical Finite Transformation Semigroups: An Introduction (Springer Science & Business Media, 2008). · Zbl 1166.20056 [6] Gould, V., Independence algebras, Algebra Universalis33 (1995) 294-318. · Zbl 0827.20075 [7] Goursat, É., Sur les substitutions orthogonales et les divisions régulières de l’espace, Ann. Sci. Ec. Norm. Supér.6 (1889) 9-102. · JFM 21.0530.01 [8] Howie, J. M., The maximum idempotent-separating congruence on an inverse semigroup, Proc. Edinb. Math. Soc.14(1) (1964) 71-79. · Zbl 0123.01701 [9] Jones, P. R., Semimodular inverse semigroups, J. Lond. Math. Soc.2(3) (1978) 446-456. · Zbl 0387.20042 [10] Liber, A. E. E., On symmetric generalized groups, Mat. Sb.33(75) (1953) 531-544. · Zbl 0052.01703 [11] L. Lima, The local automorphism monoid of an independence algebra, D.Phil. University of York (1993). [12] Meldrum, J. D., Wreath Products of Groups and Semigroups (CRC Press, 1995). · Zbl 0833.20001 [13] Munn, W. D., A certain sublattice of the lattice of congruences on a regular semigroup, Math. Proc. Cambridge Philos. Soc.60(3) (1964) 385-391. · Zbl 0129.01501 [14] Narkiewicz, W., Independence in a certain class of abstract algebras, Fund. Math.50 (1961/1962) 333-340. · Zbl 0145.01902 [15] Petrich, M., Congruences on inverse semigroups, J. Algebra55(2) (1978) 231-56. · Zbl 0401.20054 [16] Preston, G. B., Congruences on Brandt semigroups, Math. Ann.139(2) (1959) 91-94. · Zbl 0092.01803 [17] Scheiblich, H. E., Kernels of inverse semigroup homomorphisms, J. Aust. Math. Soc.18 (1974) 289-292. · Zbl 0294.20061 [18] Usenko, V. M., Subgroups of semidirect products, Ukr. Math. J.43(7-8) (1991) 982-988. · Zbl 0786.20016 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.