×

Are higher-gradient models also capable of predicting mechanical behavior in the case of wide-knit pantographic structures? (English) Zbl 1486.74005

Summary: The central theme of this study is to investigate a remarkable capability of a second-gradient continuum model developed for pantographic structures. The model is applied to a particular type of this metamaterial, namely the wide-knit pantograph. As this type of structure has low fiber density, the applicability of such a continuum model may be questionable. To address this uncertainty, numerical simulations are conducted to analyze the behavior of a wide-knit pantographic structure, and the predicted results are compared with those measured experimentally under bias extension testing. The results presented in this study show that the numerical predictions and experimental measurements are in good agreement; therefore, in some useful circumstances, this model is applicable for the analysis of wide-knit pantographic structures.

MSC:

74A20 Theory of constitutive functions in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Yildizdag, ME, Tran, CA, Barchiesi, E, et al. A multi-disciplinary approach for mechanical metamaterial synthesis: A hierarchical modular multiscale cellular structure paradigm. In: Altenbach, H, Öchsner, A (eds.) State of the art and future trends in material modeling (Advanced Structured Materials, vol. 100). Cham: Springer, 2019, 485-505.
[2] Barchiesi, E, Spagnuolo, M, Placidi, L. Mechanical metamaterials: A state of the art. Math Mech Solids 2019; 24(1): 212-234. · Zbl 1425.74036
[3] dell’Isola, F, Seppecher, P, Alibert, JJ, et al. Pantographic metamaterials: An example of mathematically driven design and of its technological challenges. Continuum Mech Thermodyn 2019; 31(4): 851-884.
[4] dell’Isola, F, Seppecher, P, Spagnuolo, M, et al. Advances in pantographic structures: Design, manufacturing, models, experiments and image analyses. Continuum Mech Thermodyn 2019; 31(4): 1231-1282.
[5] dell’Isola, Maier, G, Perego, U, et al. (eds.) The complete works of Gabrio Piola, volume I: Commented English translation (Advanced Structured Materials, vol. 38). Cham: Springer, 2014. · Zbl 1305.74003
[6] dell’Isola, F, Andreaus, U, Cazzani, A, et al. (eds.) The complete works of Gabrio Piola, volume II: Commented English translation (Advanced Structured Materials, vol. 97). Cham: Springer, 2018.
[7] Auffray, N, dell’Isola, F, Eremeyev, V, et al. Analytical continuum mechanics à la Hamilton-Piola least action principle for second gradient continua and capillary fluids. Math Mech Solids 2015; 20(4): 375-417. · Zbl 1327.76008
[8] Rahali, Y, Giorgio, I, Ganghoffer, J, et al. Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int J Eng Sci 2015; 97: 148-172. · Zbl 1423.74794
[9] dell’Isola, F, Della Corte, A, Esposito, R, et al. Some cases of unrecognized transmission of scientific knowledge: From antiquity to Gabrio Piola’s peridynamics and generalized continuum theories. In: Altenbach, H, Forest, S (eds.) Generalized continua as models for classical and advanced materials (Advanced Structured Materials, vol. 42). Cham: Springer, 2016, 77-128.
[10] dell’Isola, F, Della Corte, A, Giorgio, I. Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math Mech Solids 2017; 22(4): 852-872. · Zbl 1371.74024
[11] Mindlin, RD, Eshel, NN. On first strain-gradient theories in linear elasticity. Int J Solids Struct 1968; 4(1): 109-124. · Zbl 0166.20601
[12] Germain, P. The method of virtual power in continuum mechanics. Part 2: Microstructure. SIAM J Appl Math 1973; 25(3): 556-575. · Zbl 0273.73061
[13] Atluri, S, Cazzani, A. Rotations in computational solid mechanics. Arch Comput Methods Eng 1995; 2(1): 49-138.
[14] Cazzani, A, Atluri, S. Four-noded mixed finite elements, using unsymmetric stresses, for linear analysis of membranes. Comput Mech 1993; 11(4): 229-251. · Zbl 0773.73085
[15] Toupin, RA. Theories of elasticity with couple-stress. Arch Ration Mech Anal 1964; 17(7): 85-112. · Zbl 0131.22001
[16] Eringen, AC . Mechanics of micromorphic continua. In: Kröner, E (ed.) Mechanics of generalized continua: IUTAM symposia (International Union of Theoretical and Applied Mechanics). Berlin: Springer, 1968, 18-35. · Zbl 0181.53802
[17] Misra, A, Poorsolhjouy, P. Elastic behavior of 2D grain packing modeled as micromorphic media based on granular micromechanics. J Eng Mech 2017; 143(1): C4016005.
[18] Eremeyev, VA . On the characterization of the nonlinear reduced micromorphic continuum with the local material symmetry group. In: Altenbach, H, Müller, W, Abali, B (eds.) Higher gradient materials and related generalized continua (Advanced Structured Materials, vol. 120). Cham: Springer, 2019, 43-54.
[19] Solyaev, Y, Lurie, S, Barchiesi, E, et al. On the dependence of standard and gradient elastic material constants on a field of defects. Math Mech Solids 2020; 25(1): 35-45. · Zbl 1446.74090
[20] Alibert, J-J, Seppecher, P, dell’Isola, F. Truss modular beams with deformation energy depending on higher displacement gradients. Math Mech Solids 2003; 8(1): 51-73. · Zbl 1039.74028
[21] dell’Isola, F, Giorgio, I, Pawlikowski, M, et al. Large deformations of planar extensible beams and pantographic lattices: Heuristic homogenization, experimental and numerical examples of equilibrium. Proc R Soc London, Ser A 2016; 472(2185): 20150790.
[22] Placidi, L, Andreaus, U, Giorgio, I. Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. J Eng Math 2017; 103(1): 1-21. · Zbl 1390.74018
[23] Placidi, L, Barchiesi, E, Turco, E, et al. A review on 2D models for the description of pantographic fabrics. Z Angew Math Phys 2016; 67(5): 121. · Zbl 1359.74019
[24] Scerrato, D, Giorgio, I, Rizzi, NL. Three-dimensional instabilities of pantographic sheets with parabolic lattices: Numerical investigations. Z Angew Math Phys 2016; 67(3): 53. · Zbl 1464.74028
[25] Giorgio, I, Rizzi, N, Turco, E. Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc R Soc London, Ser A 2017; 473(2207): 20170636. · Zbl 1404.74064
[26] Eremeyev, VA, dell’Isola, F, Boutin, C, et al. Linear pantographic sheets: Existence and uniqueness of weak solutions. J Elast 2018; 132(2): 175-196. · Zbl 1398.74011
[27] Scerrato, D, Giorgio, I. Equilibrium of two-dimensional cycloidal pantographic metamaterials in three-dimensional deformations. Symmetry 2019; 11(12): 1523.
[28] Andreaus, U, Spagnuolo, M, Lekszycki, T, et al. A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler-Bernoulli beams. Continuum Mech Thermodyn 2018; 30(5): 1103-1123. · Zbl 1396.74070
[29] Harrison, P. Modelling the forming mechanics of engineering fabrics using a mutually constrained pantographic beam and membrane mesh. Composites, Part A 2016; 81: 145-157.
[30] Alibert, J, Della Corte, A. Second-gradient continua as homogenized limit of pantographic microstructured plates: A rigorous proof. Z Angew Math Phys 2015; 66(5): 2855-2870. · Zbl 1327.74128
[31] Boutin, C, Giorgio, I, Placidi, L, et al. Linear pantographic sheets: Asymptotic micro-macro models identification. Math Mech Complex Syst 2017; 5(2): 127-162. · Zbl 1457.74171
[32] Giorgio, I. Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures. Z Angew Math Phys 2016; 67(4): 95. · Zbl 1359.74018
[33] Giorgio, I, dell’Isola, F, Steigmann, D. Axisymmetric deformations of a 2nd grade elastic cylinder. Mech Res Commun 2018; 94: 45-48.
[34] Giorgio, I, Harrison, P, dell’Isola, F, et al. Wrinkling in engineering fabrics: A comparison between two different comprehensive modelling approaches. Proc R Soc London, Ser A 2018; 474(2216): 20180063.
[35] Turco, E, Giorgio, I, Misra, A, et al. King post truss as a motif for internal structure of (meta) material with controlled elastic properties. R Soc Open Sci 2017; 4(10): 171153.
[36] Spagnuolo, M, Barcz, K, Pfaff, A, et al. Qualitative pivot damage analysis in aluminum printed pantographic sheets: Numerics and experiments. Mech Res Commun 2017; 83: 47-52.
[37] Scerrato, D, Zhurba Eremeeva, IA, Lekszycki, T, et al. On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheets. Z Angew Math Mech 2016; 96(11): 1268-1279.
[38] Sedov, LI. Mathematical methods for constructing new models of continuous media. Russ Math Surv 1965; 20(5): 123. · Zbl 0151.37003
[39] Jia, H, Misra, A, Poorsolhjouy, P, et al. Optimal structural topology of materials with micro-scale tension-compression asymmetry simulated using granular micromechanics. Mater Des 2017; 115: 422-432.
[40] Misra, A, Poorsolhjouy, P. Grain- and macro-scale kinematics for granular micromechanics based small deformation micromorphic continuum model. Mech Res Commun 2017; 81: 1-6.
[41] Turco, E. In-plane shear loading of granular membranes modeled as a Lagrangian assembly of rotating elastic particles. Mech Res Commun 2018; 92: 61-66.
[42] Turco, E, dell’Isola, F, Misra, A. A nonlinear Lagrangian particle model for grains assemblies including grain relative rotations. Int J Numer Anal Methods Geomech 2019; 43(5): 1051-1079.
[43] Bilotta, A, Morassi, A, Rosset, E, et al. Numerical size estimates of inclusions in Kirchhoff-Love elastic plates. Int J Solids Struct 2019; 168: 58-72.
[44] Misra, A, Poorsolhjouy, P. Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Math Mech Solids. Epub ahead of print 24 March 2015. DOI: 10.1177/1081286515576821. · Zbl 07259257
[45] Eremeyev, VA. On the material symmetry group for micromorphic media with applications to granular materials. Mech Res Commun 2018; 94: 8-12.
[46] Cazzani, A, Serra, M, Stochino, F, et al. A refined assumed strain finite element model for statics and dynamics of laminated plates. Continuum Mech Thermodyn 2020; 32: 665-692.
[47] Altenbach, H, Eremeyev, VA, Naumenko, K. On the use of the first order shear deformation plate theory for the analysis of three-layer plates with thin soft core layer. Z Angew Math Mech 2015; 95(10): 1004-1011. · Zbl 1330.74102
[48] Altenbach, H, Eremeyev, VA. Thin-walled structures made of foams. In: Altenbach, H, Öchsner, A (eds.) Cellular and porous materials in structures and processes (CISM International Centre for Mechanical Sciences, vol. 521). Vienna: Springer, 2010, 167-242. · Zbl 1298.74143
[49] Altenbach, H, Eremeyev, VA. Direct approach-based analysis of plates composed of functionally graded materials. Arch Appl Mech 2008; 78(10): 775-794. · Zbl 1161.74426
[50] Altenbach, H, Eremeyev, VA. On the bending of viscoelastic plates made of polymer foams. Acta Mech 2009; 204(3-4): 137. · Zbl 1165.74030
[51] Pietraszkiewicz, W, Eremeyev, V. On natural strain measures of the non-linear micropolar continuum. Int J Solids Struct 2009; 46(3): 774-787. · Zbl 1215.74004
[52] Altenbach, H, Eremeyev, V. On the linear theory of micropolar plates. Z Angew Math Mech 2009; 89(4): 242-256. · Zbl 1160.74030
[53] Eremeyev, VA, Pietraszkiewicz, W. Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math Mech Solids 2016; 21(2): 210-221. · Zbl 1332.74003
[54] Placidi, L, Barchiesi, E. Energy approach to brittle fracture in strain-gradient modelling. Proc R Soc London, Ser A 2018; 474(2210): 20170878. · Zbl 1402.74094
[55] Placidi, L, Misra, A, Barchiesi, E. Two-dimensional strain gradient damage modeling: A variational approach. Z Angew Math Phys 2018; 69(3): 56. · Zbl 1393.74168
[56] Placidi, L, Barchiesi, E, Misra, A. A strain gradient variational approach to damage: A comparison with damage gradient models and numerical results. Math Mech Complex Syst 2018; 6(2): 77-100. · Zbl 1452.74019
[57] Placidi, L, Misra, A, Barchiesi, E. Simulation results for damage with evolving microstructure and growing strain gradient moduli. Continuum Mech Thermodyn 2019; 31(4): 1143-1163.
[58] Cazzani, A, Stochino, F, Turco, E. An analytical assessment of finite element and isogeometric analyses of the whole spectrum of Timoshenko beams. Z Angew Math Mech 2016; 96(10): 1220-1244. · Zbl 1338.74068
[59] Cazzani, A, Malagù, M, Turco, E. Isogeometric analysis: A powerful numerical tool for the elastic analysis of historical masonry arches. Continuum Mech Thermodyn 2016; 28(1-2): 139-156. · Zbl 1348.74190
[60] Cazzani, A, Malagù, M, Turco, E, et al. Constitutive models for strongly curved beams in the frame of isogeometric analysis. Math Mech Solids 2016; 21(2): 182-209. · Zbl 1333.74051
[61] Cazzani, A, Malagù, M, Turco, E. Isogeometric analysis of plane-curved beams. Math Mech Solids 2016; 21(5): 562-577. · Zbl 1370.74084
[62] Luongo, A, Zulli, D, Piccardo, G. Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables. J Sound Vib 2008; 315(3): 375-393.
[63] Placidi, L, Barchiesi, E, Battista, A. An inverse method to get further analytical solutions for a class of metamaterials aimed to validate numerical integrations. In: dell’Isola, F, Sofonea, M, Steigmann, D (eds.) Mathematical modelling in solid mechanics (Advanced Structured Materials, vol. 69). Singapore: Springer, 2017, 193-210. · Zbl 1387.74022
[64] Greco, L, Cuomo, M, Contrafatto, L. Two new triangular G1-conforming finite elements with cubic edge rotation for the analysis of Kirchhoff plates. Comput Methods Appl Mech Eng 2019; 356: 354-386. · Zbl 1441.74242
[65] Greco, L, Cuomo, M, Contrafatto, L. A quadrilateral G1-conforming finite element for the Kirchhoff plate model. Comput Methods Appl Mech Eng 2019; 346: 913-951. · Zbl 1440.74396
[66] Greco, L, Cuomo, M. B-Spline interpolation of Kirchhoff-Love space rods. Comput Methods Appl Mech Eng 2013; 256: 251-269. · Zbl 1352.74153
[67] Cuomo, M, Contrafatto, L, Greco, L. A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int J Eng Sci 2014; 80: 173-188. · Zbl 1423.74055
[68] Beirão, Da, Veiga, L, Hughes, T, Kiendl, J, et al. A locking-free model for Reissner-Mindlin plates: Analysis and isogeometric implementation via NURBS and triangular NURPS. Math Models Methods Appl Sci 2015; 25(08): 1519-1551. · Zbl 1321.74065
[69] Niiranen, J, Balobanov, V, Kiendl, J, et al. Variational formulations, model comparisons and numerical methods for Euler-Bernoulli micro- and nano-beam models. Math Mech Solids 2019; 24(1): 312-335. · Zbl 1425.74264
[70] Balobanov, V, Niiranen, J. Locking-free variational formulations and isogeometric analysis for the Timoshenko beam models of strain gradient and classical elasticity. Comput Methods Appl Mech Eng 2018; 339: 137-159. · Zbl 1440.74179
[71] Yildizdag, ME, Demirtas, M, Ergin, A. Multipatch discontinuous Galerkin isogeometric analysis of composite laminates. Continuum Mech Thermodyn 2020; 32: 607-620.
[72] Yildizdag, ME, Ardic, IT, Demirtas, M, et al. Hydroelastic vibration analysis of plates partially submerged in fluid with an isogeometric FE-BE approach. Ocean Eng 2019; 172: 316-329.
[73] Yildizdag, ME, Ardic, IT, Kefal, A, et al. An isogeometric FE-BE method and experimental investigation for the hydroelastic analysis of a horizontal circular cylindrical shell partially filled with fluid. Thin Walled Struct 2020; 151: 106755.
[74] Greco, L. An iso-parametric \(G^1\)-conforming finite element for the nonlinear analysis of Kirchhoff rod. Part I: The 2D case. Continuum Mech Thermodyn. Epub ahead of print 14 January 2020. DOI: 10.1007/s00161-020-00861-9.
[75] Seppecher, P. Moving contact lines in the Cahn-Hilliard theory. Int J Eng Sci 1996; 34(9): 977-992. · Zbl 0899.76042
[76] Pideri, C, Seppecher, P. A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Continuum Mech Thermodyn 1997; 9(5): 241-257. · Zbl 0893.73006
[77] Camar-Eddine, M, Seppecher, P. Non-local interactions resulting from the homogenization of a linear diffusive medium. C R Acad Sci, Ser I: Math 2001; 332(5): 485-490. · Zbl 1032.74047
[78] Camar-Eddine, M, Seppecher, P. Determination of the closure of the set of elasticity functionals. Arch Ration Mech Anal 2003; 170(3): 211-245. · Zbl 1030.74013
[79] Eugster, S, Hesch, C, Betsch, P, et al. Director-based beam finite elements relying on the geometrically exact beam theory formulated in skew coordinates. Int J Numer Methods Eng 2014; 97(2): 111-129. · Zbl 1352.74152
[80] Berezovski, A, Yildizdag, ME, Scerrato, D. On the wave dispersion in microstructured solids. Continuum Mech Thermodyn 2020; 32: 569-588. · Zbl 1442.74092
[81] Bouchitté, G, Mattei, O, Milton, GW, et al. On the forces that cable webs under tension can support and how to design cable webs to channel stresses. Proc R Soc London, Ser A 2019; 475(2223): 20180781. · Zbl 1427.74078
[82] Eugster, SR, dell’Isola, F, Steigmann, DJ. Continuum theory for mechanical metamaterials with a cubic lattice substructure. Math Mech Complex Systems 2019; 7(1): 75-98. · Zbl 1428.74004
[83] Vangelatos, Z, Komvopoulos, K, Grigoropoulos, C. Vacancies for controlling the behavior of microstructured three-dimensional mechanical metamaterials. Math Mech Solids 2019; 24(2): 511-524. · Zbl 1447.74034
[84] Vangelatos, Z, Gu, GX, Grigoropoulos, CP. Architected metamaterials with tailored 3D buckling mechanisms at the microscale. Extreme Mech Lett 2019; 33: 100580.
[85] Vangelatos, Z, Micheletti, A, Grigoropoulos, CP, et al. Design and testing of bistable lattices with tensegrity architecture and nanoscale features fabricated by multiphoton lithography. Nanomaterials 2020; 10(4): 652.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.