×

Algorithms and information processing in numerical research of the Barenblatt-Zheltov-Kochina stochastic model. (Russian. English summary) Zbl 1486.76082

Summary: The paper investigates a model of pressure dynamics of a liquid filtered in a fractured-porous medium with random external action. It is based on the Cauchy-Dirichlet problem for the Barenblatt-Zheltov-Kochina stochastic equation. An algorithm for numerical research and information processing is presented, which provides for obtaining both degenerate and non-degenerate equations. The article describes an algorithm for the numerical solution of the Cauchy-Dirichlet problem for the Barenblatt-Zheltov-Kochina stochastic equation, which is based on the Galerkin method. Numerical study of the stochastic model implies obtaining and processing the results of \(n\) experiments at various values of a random variable, including those related to rare events. The main theoretical results that have made it possible to conduct this numerical study are the methods of the theory of degenerate groups of operators and the theory of Sobolev-type equations. Algorithms are represented by schemes that allow to build flowcharts of programs on their basis, for conducting computational experiments.

MSC:

76S05 Flows in porous media; filtration; seepage
PDF BibTeX XML Cite
Full Text: DOI MNR

References:

[1] G.I. Barenblatt, Yu.P. Zheltov, I.N. Kochina, “Ob osnovnykh predstavleniyakh teorii filtratsii v treschinovatykh sredakh”, Priklad. matematika i mekhanika, 24:5 (1960), 852-864 · Zbl 0104.21702
[2] G.A. Sviridyuk, V.V. Shemetova, “Uravneniya Barenblatta-Zheltova-Kochinoi na grafe”, Vestnik Magnitogorskogo gosudarstvennogo universiteta, 2003, no. 4, 129 · Zbl 1201.35180
[3] Kh.G. Umarov, “Yavnyi vid resheniya smeshannoi zadachi v anizotropnom poluprostranstve dlya uravneniya Barenblatta-Zheltova-Kochinoi”, Vladikavkazskii matematicheskii zhurnal, 15:1 (2013), 51-64 · Zbl 1326.35288
[4] G.A. Sviridyuk, “K obschei teorii polugrupp operatorov”, Uspekhi mat. nauk, 49:4(298) (1994), 47-74 · Zbl 0882.47019
[5] S.A. Zagrebina, “Mnogotochechnaya nachalno-konechnaya zadacha dlya stokhasticheskoi modeli Barenblatta-Zheltova-Kochinoi”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Kompyuternye tekhnologii, upravlenie, radioelektronika, 13:4 (2013), 103-111
[6] O.G. Kitaeva, D.E. Shafranov, G.A. Sviridyuk, “Exponential Dichotomies in Barenblatt-Zheltov-Kochina Model in Spaces of Differential Forms with «Noise»”, Vestnik YuUrGU. Seriya «Matematicheskoe modelirovanie i programmirovanie», 12:2 (2019), 47-57 · Zbl 1428.35691
[7] S.I. Kadchenko, E.A. Soldatova, S.A. Zagrebina, “Numerical Research of the Barenblatt-Zheltov-Kochina Stochastic Model”, Vestnik YuUrGU. Seriya «Matematicheskoe modelirovanie i programmirovanie», 9:2 (2016), 117-123 · Zbl 1352.60099
[8] A. Favini, G.A. Sviridyuk, A.A. Zamyshlyaeva, “One Class of Sobolev Type Equations of Higher Order with Additive «White Noise»”, Communications on Pure and Applied Analysis, 15:1 (2016), 185-196 · Zbl 1331.35406
[9] A. Favini, G.A. Sviridyuk, N.A. Manakova, “Linear sobolev type equations with relatively p-sectorial operators in space of «noises»”, Abstract and Applied Analysis, 2015 (2015), 697410 · Zbl 1345.60054
[10] A. Favini, G.A. Sviridyuk, M. Sagadeeva, “Linear Sobolev Type Equations with Relatively p-Radial Operators in Space of «Noises»”, Mediterranean Journal of Mathematics, 13:6 (2016), 4607-4621 · Zbl 1366.60086
[11] A. Favini, S.A. Zagrebina, G.A. Sviridyuk, “Multipoint Initial-Final Value Problems for Dynamical Sobolev-Type Equations in the Space of Noises”, Electronic Journal of Differential Equations, 2018:128 (2018), 1-10 · Zbl 1434.60139
[12] I.V. Melnikova, U.A. Alekseeva, V.A. Bovkun, “Uravneniya, svyazannye so sluchainymi protsessami: polugruppovoi podkhod i preobrazovanie Fure”, Sovremennaya matematika. Fundamentalnye napravleniya, 67:2 (2021), 324-348
[13] Yu. E. Gliklikh, “Izuchenie uravnenii leontevskogo tipa s belym shumom metodami proizvodnykh v srednem sluchainykh protsessov”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya «Matematicheskoe modelirovanie i programmirovanie», 27 (286):13 (2012), 24-34 · Zbl 1413.60060
[14] A.V. Keller, A.L. Shestakov, G.A. Sviridyuk, Y.V. Khudyakov, “The Numerical Algorithms for the Measurement of the Deterministic and Stochastic Signals”, Semigroups of operators — theory and applications, Springer Proceedings in Mathematics and Statistics, Springer, Cham, 2015, 183-195 · Zbl 1378.94009
[15] A.A. Zamyshlyaeva, A.V. Keller, M.B. Syropiatov, “Stochastic Model of Optimal Dynamic Measurements”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 11:2 (2018), 147-153 · Zbl 1401.93233
[16] E.A. Soldatova, S.A. Zagrebina, “Lineinye uravneniya sobolevskogo tipa s otnositelno p-ogranichennymi operatorami i additivnym belym shumom”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Matematika, 6:1 (2013), 20-34 · Zbl 1293.60067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.