×

Fuzzy rating scales: does internal consistency of a measurement scale benefit from coping with imprecision and individual differences in psychological rating? (English) Zbl 1486.91073

Summary: Measuring psychological variables (attitudes, opinions, perceptions, feelings, etc.) there is a need for rating scales coping with both the natural imprecision and individual differences. In this respect, the so-called fuzzy rating scales have been introduced as a doubly continuous instrument allowing to capture both imprecision and individual differences. Aiming to show the advantages of using fuzzy rating scales in the setting of questionnaires, the extended Cronbach \(\alpha\) is considered to quantify the internal consistency associated with constructs involving fuzzy rating scale-based items. This extended tool allows us to draw interesting conclusions, the main one supporting the use of fuzzy rating scales instead of standard ones (namely, Likert type, visual analogue, and even fuzzy linguistic scales). Although general theoretical conclusions could not be drawn, unequivocal majority trends can be stated from simulation-based and real-life examples.

MSC:

91E45 Measurement and performance in psychology
91F20 Linguistics
91B86 Mathematical economics and fuzziness
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Acampora, G.; Foggia, P.; Saggese, A.; Vento, M., A hierarchical neuro-fuzzy architecture for human behavior analysis, Inf. Sci., 310, 130-148 (2015)
[2] Alkis, Y.; Kadirhan, Z.; Sat, M., Development and validation of social anxiety scale for social media users, Comput. Hum. Behav., 72, 296-303 (2017)
[3] Arifin, W. N., A web-based sample size calculator for reliability studies, Educ. Med. J., 10, 3, 67-76 (2018)
[4] Benoit, E., Expression of uncertainty in fuzzy scales based measurements, Measurement, 46, 3778-3782 (2013)
[5] Bertoluzza, C.; Corral, N.; Salas, A., On a new class of distances between fuzzy numbers, Mathw. Soft Comput., 2, 71-84 (1995) · Zbl 0887.04003
[6] Á. Blanco-Fernández, M.R. Casals, A. Colubi, N. Corral, M. García-Bárzana, M.Á. Gil, G. González-Rodríguez, M.T. López, M.A. Lubiano, M. Montenegro, A.B. Ramos-Guajardo, S. de la Rosa de Sáa, B. Sinova, A distance-based statistical analysis of fuzzy number-valued data. Int. J. Approx. Reasoning, 55(7) (2014) 1487-1501; Rejoinder, Int. J. Approx. Reasoning 55 (7) (2014) 1601-1605. · Zbl 1407.62095
[7] Bolin, J. H.; Edwards, J. M.; Finch, W. H.; Cassady, J. C., Applications of cluster analysis to the creation of perfectionism profiles: a comparison of two clustering approaches, Front. Psychol., 5, Art. 343 (2014)
[8] Bonett, D. G.; Wright, T. A., Cronbach’s alpha reliability. Interval estimation, hypothesis testing, and sample size planning, J. Organ. Behav., 36, 1, 3-15 (2014)
[9] Castro-López, A.; Alonso, J. M., Modeling human perceptions in e-commerce applications: a case study on business-to-consumers websites in the textile and fashion sector, (Meier, A.; Portmann, E.; Terán, L., Applying Fuzzy Logic for the Digital Economy and Society. Fuzzy Management Methods (2019), Springer: Springer Cham), 115-134
[10] Cho, E., Making reliability reliable: a systematic approach to reliability coefficients, Organ. Res. Methods, 19, 4, 651-682 (2016)
[11] Cho, E.; Kim, S., Chronbach’s coefficient alpha: Well-known but poorly understood, Organ. Res. Methods, 18, 2, 207-230 (2015)
[12] Colubi, A.; González-Rodríguez, G.; Gil, M.Á.; Trutschnig, W., Nonparametric criteria for supervised classification of fuzzy data, Int. J. Approx. Reasoning, 52, 1272-1282 (2011) · Zbl 1319.62125
[13] Cronbach, L. J., Coefficient alpha and the internal structure of tests, Psychometrika, 16, 3, 297-334 (1951) · Zbl 1367.62314
[14] Dagˇdeviren, M.; Yüksel, I., Developing a fuzzy analytic hierarchy process (AHP) model for behavior-based safety management, Inf. Sci., 178, 1717-1733 (2008)
[15] de la Rosa de Sáa, S.; Gil, M.Á.; González-Rodríguez, G.; López, M. T.; Lubiano, M. A., Fuzzy rating scale-based questionnaires and their statistical analysis, IEEE Trans. Fuzzy Syst., 23, 1, 111-126 (2015)
[16] Diamond, P.; Kloeden, P., Metric spaces of fuzzy sets, Fuzzy Sets Syst., 35, 241-249 (1990) · Zbl 0704.54006
[17] D’Urso, P.; Gil, M.Á., Fuzzy data analysis and classification, Adv. Data Anal. Classif., 11, 4, 645-657 (2017) · Zbl 1476.00115
[18] Efe, B.; Kurt, M., A systematic approach for an application of personnel selection in assembly line balancing problem, Int. Trans. Oper. Res., 25, 3, 1001-1025 (2018) · Zbl 1396.91364
[19] Eyupoglu, S. Z.; Gardashova, L. A.; Allahverdiyev, R. A.; Saner, T., Application of fuzzy logic in job satisfaction performance problem, Procedia Comput. Sci., 102, 190-197 (2016)
[20] Féron, R., Ensembles aléatoires flous, Comptes Rendus Acad. Sci. Ser. A, 282, 903-906 (1976) · Zbl 0327.60004
[21] Fiss, P. C., Building better causal theories: A fuzzy set approach to typologies in organization research, Acad. Manage. J., 54, 2, 393-420 (2011)
[22] Frazier, M. L.; Tupper, C.; Fainshmidt, S., The path(s) to employee trust in direct supervisor in nascent and established relationships: A fuzzy set analysis, J. Organ. Behav., 37, 1023-1043 (2016)
[23] Fréchet, M., Les éléments aléatoires de nature quelconque dans un espace distancié, Ann. Inst. Henri Poincaré, 10, 215-310 (1948) · Zbl 0035.20802
[24] Funke, F.; Reips, U. D., Why semantic differentials in Web-based research should be made from visual analogue scales and not from 5-point scales, Field Methods, 24, 310-327 (2012)
[25] Gabriel, A. S.; Campbell, J. T.; Djurdjevic, E.; Johnson, R. E.; Rosen, C. C., Fuzzy profiles: comparing and contrasting Latent Profile Analysis and Fuzzy Set Qualitative Comparative Analysis for person-centered research, Organ. Res. Methods, 21, 4, 877-904 (2018)
[26] Gil, M.Á.; Lubiano, M. A.; de la Rosa de Sáa, S.; Sinova, B., Analyzing data from a fuzzy rating scale-based questionnaire. A case study, Psicothema, 27, 2, 182-191 (2015)
[27] González-Rodríguez, G.; Colubi, A.; Gil, M.Á., Fuzzy data treated as functional data. A one-way ANOVA test approach, Comput. Stat. Data Anal., 56, 4, 943-955 (2012) · Zbl 1243.62104
[28] Hayes, M. H.S.; Patterson, D. G., Experimental development of the graphic rating method, Psychol. Bull., 18, 98-99 (1921)
[29] Herrera, F.; Herrera-Viedma, E.; Martínez, L., A fuzzy linguistic methodology to deal with unbalanced linguistic term sets, IEEE Trans. Fuzzy Syst., 16, 2, 354-370 (2008)
[30] Hesketh, B.; Griffin, B.; Loh, V., A future-oriented retirement transition adjustment framework, J. Vocat. Behav., 79, 2, 303-314 (2011)
[31] Hesketh, T.; Hesketh, B., Computerized fuzzy ratings: The concept of a fuzzy class, Behav. Res. Methods Instr. Comput., 26, 3, 272-277 (1994)
[32] Hesketh, B.; McLachlan, K.; Gardner, D., Work adjustment theory: An empirical test using a fuzzy rating scale, J. Vocat. Behav., 40, 3, 318-337 (1992)
[33] Hesketh, B.; Pryor, R.; Gleitzman, M.; Hesketh, T., Practical applications and psychometric evaluation of a computerised fuzzy graphic rating scale, (Zétényi, T., Fuzzy Sets in Psychology. Advances in Psychology Series, 56(C), NH (1988), Elsevier: Elsevier Amsterdam), 425-454
[34] Hesketh, T.; Pryor, R.; Hesketh, B., An application of a computerized fuzzy graphic rating scale to the psychological measurement of individual differences, Int. J. Man-Machine Stud., 29, 1, 21-35 (1988) · Zbl 0653.92021
[35] Hoekstra, R.; Vugteveen, J.; Warrens, M. J.; Kruyen, P. M., An empirical analysis of alleged misunderstandings of coefficient alpha, Int. J. Soc. Res. Methodol., 22, 4, 351-364 (2019)
[36] Javali, S. B.; Gudaganavar, N. V.; Raj, S. M., Effect of varying sample size in estimation of reliability coefficients of internal consistency, WebmedCentral BIOSTATISTICS, 2, 2, WMC001572 (2011)
[37] Jin, K. Y.; Chen, H. F., MIMIC approach to assessing differential item functioning with control of extreme response style, Behav. Res. Methods, 52, 23-35 (2020)
[38] Jónás, T.; Tóth, Z. E.; Árva, G., Applying a fuzzy questionnaire in a peer review process, Total Qual. Manag. Bus. Excell., 29, 9-10, 1228-1245 (2018)
[39] Karyotis, C.; Doctor, F.; Iqbal, R.; James, A.; Chang, V., A fuzzy computational model of emotion for cloud based sentiment analysis, Inf. Sci., 433-434, 448-463 (2018)
[40] Kochen, M., Applications of fuzzy sets in Psychology, (Zadeh, L. A.; Fu, K.-S.; Tanaka, K.; Shimura, M., Fuzzy Sets and Their Applications to Cognitive and Decision Processes (1975), Academic Press: Academic Press New York), 395-408 · Zbl 0317.92032
[41] Konacoglu, J.; Albayrak, I., A new fuzzy decision making approach for personnel selection problem, Intell. Dec. Tech., 12, 4, 471-482 (2019)
[42] Körner, R., On the variance of fuzzy random variables, Fuzzy Sets Syst., 92, 1, 83-93 (1997) · Zbl 0936.60017
[43] Kuhlmann, T.; Dantlgraber, M.; Reips, U. D., Investigating measurement equivalence of visual analogue scales and Likert-type scales in Internet-based personality questionnaires, Behav. Res. Methods, 49, 6, 2173-2181 (2017)
[44] Likert, R., A technique for the measurement of attitudes, Arch. Psychol., 22, 140-155 (1932)
[45] Lubiano, M. A.; Carleos, C.; Montenegro, M.; Gil, M.Á., Case study-based sensititivy analysis of scale estimates w.r.t. the shape of fuzzy data, (Destercke, S.; Denoeux, T.; Gil, M.Á.; Grzegorzewski, P.; Hryniewicz, O., Uncertainty Modelling in Data Science, Advances in Intelligent Systems and Computing, 832 (2019), Springer: Springer Heidelberg), 157-165
[46] M.A. Lubiano, S. de la Rosa de Sáa, FuzzyStatTra: Statistical Methods for Trapezoidal Fuzzy Numbers (2017) Version 1.0.
[47] Lubiano, M. A.; de la Rosa de Sáa, S.; Montenegro, M.; Sinova, B.; Gil, M.Á., Descriptive analysis of responses to items in questionnaires. Why not using a fuzzy rating scale?, Inf. Sci., 360, 131-148 (2016)
[48] Lubiano, M. A.; Gil, M.Á.; López-Díaz, M.; López, M. T., The \(\overrightarrow{\lambda} \)-mean squared dispersion associated with a fuzzy random variable, Fuzzy Sets Syst., 111, 307-317 (2000) · Zbl 0973.60005
[49] Lubiano, M. A.; González-Gil, P.; Sánchez-Pastor, H.; Pradas, C.; Arnillas, H., An incipient Fuzzy Logic-based analysis of the medical specialty influence on the perception about mental patients, (Gil, E.; Gil, E.; Gil, J.; Gil, M.Á., The Mathematics of the Uncertain, Studies in Systems, Decision and Control, 142 (2018), Springer: Springer Heidelberg), 653-662 · Zbl 1396.62001
[50] Lubiano, M. A.; Montenegro, M.; Sinova, B.; de la Rosa de Sáa, S.; Gil, M.Á., Hypothesis testing for means in connection with fuzzy rating scale-based data: algorithms and applications, Eur. J. Oper. Res., 251, 3, 918-929 (2016) · Zbl 1346.62027
[51] Lubiano, M. A.; Salas, A.; Carleos, C.; de la Rosa de Sáa, S.; Gil, M.Á., Hypothesis testing-based comparative analysis between rating scales for intrinsically imprecise data, Int. J. Approx. Reasoning, 88, 128-147 (2017) · Zbl 1429.62112
[52] M.A. Lubiano, A. Salas, S. de la Rosa de Sáa, M., Montenegro, M.Á. Gil, An empirical analysis of the coherence between fuzzy rating scale- and Likert scale-based responses to questionnaires, in: M.B. Ferraro, P. Giordani, B. Vantaggi, M. Gagolewski, M.Á Gil, P. Grzegorzewski, O. Hryniewicz (Eds.), Soft Methods for Data Science. Advances in Intelligent Systems and Computing, 456, Springer, Heidelberg, 2017, pp. 329-337.
[53] Lubiano, M. A.; Salas, A.; Gil, M.Á., A hypothesis testing-based discussion on the sensitivity of means of fuzzy data with respect to data shape, Fuzzy Sets Syst., 328, 54-69 (2017) · Zbl 1380.62090
[54] McNeish, D., Thanks coefficient alpha, we’ll take it from here, Psychol. Methods, 23, 3, 412-433 (2018)
[55] Mendel, J. M.; Korjani, M. M., A new method for calibrating the fuzzy sets used in fsQCA, Inf. Sci., 468, 155-171 (2018)
[56] Menold, N.; Wolf, C.; Bogner, K., Design aspects of rating scales in questionnaires, Math. Popul. Stud., 25, 2, 63-65 (2018) · Zbl 1480.00051
[57] Moore, R. E., Interval Analysis (1966), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0176.13301
[58] Motawa, I. A.; Anumba, C. J.; El-Hamalawi, A., A fuzzy system for evaluating the risk of change in construction projects, Adv. Eng. Softw., 37, 583-591 (2006)
[59] Nasibov, E. N.; Mert, A., On methods of defuzzification of parametrically represented fuzzy numbers, Autom. Control Comp. Sci., 41, 5, 265-273 (2007)
[60] Nunnally, J. C., Psychometric Methods (1978), McGraw-Hill: McGraw-Hill New York
[61] Nunnally, J. C.; Bernstein, H., Psychometric Theory (1994), McGraw Hill: McGraw Hill New York
[62] Osgood, C. E.; Suci, G.; Tannenbaum, P., The Measurement of Meaning (1957), University of Illinois Press: University of Illinois Press Urbana
[63] Puri, M. L.; Ralescu, D. A., Fuzzy random variables, J. Math. Anal. Appl., 114, 409-422 (1986) · Zbl 0592.60004
[64] Quirós, P.; Alonso, J. M.; Pancho, D. P., Descriptive and comparative analysis of human perceptions expressed through fuzzy rating scale-based questionnaires, Int. J. Comput. Intell. Syst., 9, 3, 450-467 (2016)
[65] Raykov, T.; Marcoulides, G. A., Thanks coefficient alpha, we still need you!, Educ. Psychol. Meas., 79, 1, 200-210 (2019)
[66] Robinson, M. A., Using multi-item psychometric scales for research and practice in human resource management, Hum. Resour. Manage., 57, 3, 739-750 (2018)
[67] Ruspini, E. H., Numerical methods for fuzzy clustering, Inf. Sci., 2, 3, 319-350 (1970) · Zbl 0205.21301
[68] Savaş, S. K.; Nasibov, E., A fuzzy ID3 induction for linguistic data sets, Int. J. Intell. Syst., 33, 4, 858-878 (2018)
[69] Şahin, F.; Karadagˇ, H.; Tuncer, B., Big five personality traits, entrepreneurial self-efficacy and entrepreneurial intention. A configurational approach, Int. J. Entrep. Behav. Res., 25, 6, 1188-1211 (2019)
[70] Sinova, B.; Gil, M.Á.; Colubi, A.; Van Aelst, S., The median of a random fuzzy number. The 1-norm distance approach, Fuzzy Sets Syst., 200, 99-115 (2012) · Zbl 1260.60011
[71] Smithson, M., Fuzzy sets and fuzzy logic in the human sciences, (Kahraman, C.; Kaymak, U.; Yazici, A., Fuzzy Logic in Its 50th Year, Studies in Fuzziness and Soft Computing, 341 (2016), Springer: Springer Heidelberg), 175-186 · Zbl 1404.03015
[72] Srivastava, S.; Pant, M.; Agarwal, N., A review on role of Fuzzy Logic in Psychology, (Pant, M.; Deep, K.; Bansal, J. C.; Nagar, A.; Das, K. N., Proceedings of Fifth International Conference on Soft Computing for Problem Solving, Advances in Intelligent Systems and Computing 437 (2016), Springer: Springer Heidelberg), 783-794
[73] Stefanini, L.; Bede, B., Generalized fuzzy differentiability with LU-parametric representation, Fuzzy Sets Syst., 257, 184-203 (2014) · Zbl 1335.26014
[74] Stefanini, L.; Sorini, L.; Guerra, M. L., Parametric representation of fuzzy numbers and applications to fuzzy calculus, Fuzzy Sets Syst., 157, 2423-2455 (2006) · Zbl 1109.26024
[75] Stoklasa, J.; Talášek, T.; Musilová, J., Fuzzy approach - a new chapter in the methodology of Psychology?, Human Affairs, 24, 189-203 (2014)
[76] Sullivan, A. L.; Sadeh, S.; Houri, A. K., Are school psychologists’ special education eligibility decisions reliable and unbiased?: A multi-study experimental investigation, J. Sch. Psychol., 77, 90-109 (2019)
[77] Sung, Y.-T.; Wu, J.-S., The Visual Analogue Scale for rating, ranking and paired-comparison (VAS-RRP): A new technique for psychological measurement, Behav. Res. Methods, 50, 1694-1715 (2018)
[78] Takemura, K., Ambiguous comparative judgment: Fuzzy set model and data analysis, Jpn. Psychol. Res., 49, 2, 148-156 (2007)
[79] Thurstone, L. L., Theory of attitude measurement, Psychol. Rev., 36, 3, 222-241 (1929)
[80] Tijmstra, J.; Bolsinova, M.; Jeon, M., General mixture item response models with different item response structures: exposition with an application to Likert scales, Behav. Res. Methods, 50, 6, 2325-2344 (2018)
[81] Tóth, Z. E.; Jónas, T.; Dénes, R. V., Applying flexible fuzzy numbers for evaluating service features in healthcare – patients and employees in the focus, Total Qual. Manag. Bus. Excell., 30, S1, S240-S254 (2019)
[82] W. Trutschnig, M.A. Lubiano, SAFD: Statistical Analysis of Fuzzy Data (2019) Version 2.1. · Zbl 1348.62007
[83] Verkuilen, J.; Clark, T. D.; Price, C. N.; Racanello, A. M., Fuzzy Set Theory (2020), SAGE Research Methods Foundations: SAGE Research Methods Foundations Foundation Entry
[84] Verswijvel, K.; Heirman, W.; Hardies, K.; Walrave, M., Designing and validating the friendship quality on social network sites questionnaire, Comput. Hum. Behav., 86, 289-298 (2018)
[85] Visual Analog Scales, in: B.B. Frey (Ed.), The SAGE Encyclopedia of Educational Research, Measurement, and Evaluation, vol. 4, SAGE Publications Inc.: Thousand Oaks, CA, 2018.
[86] Wadgave, U.; Khairnar, M. R., Parametric tests for Likert scale: For and against, Asian J. Psychiatr., 24, 67-68 (2016)
[87] Wetzel, E.; Greiff, S., The world beyond rating scales. Why we should think more carefully about the response format in questionnaires, Eur. J. Psychol. Assess., 34, 1-5 (2018)
[88] Yager, R. R., A procedure for ordering fuzzy subsets of the unit interval, Inf. Sci., 24, 143-161 (1981) · Zbl 0459.04004
[89] Yeh, C. H.; Willis, R. J.; Deng, H.; Pan, H., Task oriented weighting in multi-criteria analysis, Eur. J. Oper. Res., 119, 130-146 (1999) · Zbl 0934.91013
[90] Yeung, A. W.K.; Wong, N. S.M., The historical roots of Visual Analog Scale in Psychology as revealed by reference publication year spectroscopy, Front. Hum. Neurosci., 13, 86 (2019)
[91] Yurdugül, H., Minimum sample size for Cronbach’s coefficient alpha: a Monte Carlo study, Hacettepe Egitim Dergisi, 35, 397-405 (2008)
[92] Zadeh, L. A., Fuzzy sets, Inf. Cont., 8, 338-353 (1965) · Zbl 0139.24606
[93] Zadeh, L. A., Quantitative fuzzy semantics, Inf. Sci., 3, 159-176 (1971) · Zbl 0218.02057
[94] L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning. Part 1, Inf. Sci. 8 (1975) 199-249; Part 2, Inf. Sci. 8 (1975) 301-353; Part 3. Inf. Sci. 9 (1975) 43-80. · Zbl 0404.68075
[95] Zadeh, L. A., A computational approach to fuzzy quantifiers in natural languages, Comput. Math. Appl., 9, 149-184 (1983) · Zbl 0517.94028
[96] Zadeh, L. A., Is there a need for fuzzy logic?, Inf. Sci., 178, 2751-2779 (2008) · Zbl 1148.68047
[97] T. Zétényi (Ed.), Fuzzy Sets in Psychology, Anvances in Psychology, 56, North-Holland/Elsevier, Amsterdam, 1988. · Zbl 0654.00012
[98] Zhou, Q.; Xu, Z.; Yen, N. Y., User sentiment analysis based on social network information and its application in consumer reconstruction intention, Comput. Hum. Behav., 100, 177-183 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.