×

Counteracting dynamical degradation of a class of digital chaotic systems via unscented Kalman filter and perturbation. (English) Zbl 1486.94028

Summary: Theoretically, any chaotic system or chaotic map has ideal complex dynamics. However, because of the finite precision of simulation software and digital devices during implementation, chaotic systems often undergo dynamical degradation, which hinders the further application of digital chaotic systems in many fields. Therefore in this paper, the method based on the perturbation and Unscented Kalman Filter (UKF) theory is designed to counteract the dynamical degradation of digital chaotic systems. Specifically, the UKF algorithm is employed to reinstate the original dynamic performance of the chaotic system, and then perturbation feedback technology is used to cause the chaotic system to obtain strong dynamic performance to resist attacks. The experimental and simulation results demonstrate that this method has good effect on improving the dynamic degradation of digital chaotic map. In addition, the corresponding pseudorandom number generator (PRNG) is constructed via this method, and its randomness is evaluated using the National Institute of Standards and Technology (NIST) SP800-22 and TestU01 test suites. By comparing with other schemes, it can be seen that this PRNG has better performance which illustrates the proposed scheme can be applied in the chaos-based cryptography and utilized in other potential applications.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
93E11 Filtering in stochastic control theory
37N99 Applications of dynamical systems

Software:

TestU01
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Dachselt, F.; Schwarz, W., Chaos and cryptography, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 48, 12, 1498-1509 (2002) · Zbl 0999.94030
[2] Wang, X.; Zhang, W.; Guo, W., Secure chaotic system with application to chaotic ciphers, Inf. Sci., 221, 1, 555-570 (2013) · Zbl 1293.94098
[3] Luo, Y.; Du, M., A self-adapting image encryption algorithm based on spatiotemporal chaos and ergodic matrix, Chin. Phys. B, 22, 8, 316-324 (2013)
[4] Luo, Y.; Cao, L.; Qiu, S.; Lin, H.; Harkin, J.; Liu, J., A chaotic map-control-based and the plain image-related cryptosystem, Nonlinear Dyn., 1-18 (2015)
[5] Luo, Y.; TangShunbin, F.; Jiang, J. Liu, A double-image encryption scheme based on amplitude-phase encoding and discrete complex random transformation, IEEE Access, 6, 1, 77740-77753 (2018)
[6] Asgari-chenaghlu, M.; Balafar, M.-A., A novel image encryption algorithm based on polynomial combination of chaotic maps and dynamic function generation, Signal Process., 157, 1, 1-13 (2019)
[7] Addabbo, T.; Alioto, M.; Fort, A.; Pasini, A.; Rocchi, S.; Vignoli, V., A class of maximum-period nonlinear congruential generators derived from the rényi chaotic map, IEEE Trans. Circuits Syst. I Regular Papers, 54, 4, 816-828 (2007) · Zbl 1374.94886
[8] Li, C.; Chen, J.; Chang, T., A chaos-based pseudo random number generator using timing-based reseeding method, IEEE Int. Symposium Circuits Syst., 3277-3280 (2006)
[9] Wang, X.; Qin, X., A new pseudo-random number generator based on cml and chaotic iteration, Nonlinear Dyn., 70, 2, 1589-1592 (2012)
[10] Liu, L.; Miao, S.; Cheng, M.; Gao, X., A pseudorandom bit generator based on new multi-delayed chebyshev map, Inform. Process. Lett., 116, 11, 674-681 (2016)
[11] Garcia-bosque, M.; Pérez-resa, A.; Sánchez-azqueta, C.; Aldea, C.; Celma, S., Chaos-based bitwise dynamical pseudorandom number generator on FPGA, IEEE Trans. Instrum. Meas., 68, 1, 2018-2020 (2019)
[12] Rezk, A. A.; Madian, A. H.; Radwan, A. G.; Soliman, A. M., Reconfigurable chaotic pseudo random number generator based on FPGA, AEUE - Int. J. Electron. Commun., 98, 1, 174-180 (2019)
[13] Cernak, J., Digital generators of chaos, Phys. Lett. A, 214, 3-4, 151-160 (1996) · Zbl 0972.37508
[14] Wang, S.; Liu, W.; Lu, H.; Kuang, J.; Hu, G., Periodicity of chaotic trajectories in realizations of finite computer pecisions and its implecation in chaos communications, Int. J. Mod. Phys. B, 18, 19, 2617-2622 (2008)
[15] Liu, Y.; Fan, H.; Xie, E. Y.; Cheng, G.; Li, C., Deciphering an image cipher based on mixed transformed logistic maps, Int. J. Bifurcation Chaos, 25, 13, 1885-1896 (2015) · Zbl 1330.94042
[16] Arroyo, D.; Alverez, G.; Li, S.; Li, C.; Fernandez, V., Cryptanalysis of a new chaotic cryptosystem based on ergodicity, Int. J. Mod. Phys. B, 23, 05, 651-659 (2009) · Zbl 1170.94323
[17] Li, C.; Lin, D.; Lu, J., Cryptanalyzing an image-scrambling encryption algorithm of pixel bits, IEEE Multimedia, 24, 3, 64-71 (2017)
[18] Zhang, Y.; Xiao, D., Cryptanalysis of s-box-only chaotic image ciphers against chosen plaintext attack, Nonlinear Dyn., 72, 4, 751-756 (2013)
[19] Arroyo, D.; Li, C.; Li, S.; Alvarez, G.; Halang, W. A., Cryptanalysis of an image encryption scheme based on a new total shuffling algorithm, Chaos Solitons Fractals, 41, 5, 2613-2616 (2009) · Zbl 1198.94019
[20] Li, C.; Lo, K. T., Optimal quantitative cryptanalysis of permutation-only multimedia ciphers against plaintext attacks, Signal Process., 91, 4, 949-954 (2011) · Zbl 1217.94100
[21] Li, C.; Li, S.; Halang, W. A.; Halang, W. A., Cryptanalysis of an image encryption scheme based on a compound chaotic sequence, Image Vis. Comput., 27, 8, 1035-1039 (2009)
[22] Wheeler, D. D.; Matthews, R. A.J., Supercomputer investigations of a chaotic encryption algorithm, Cryptologia, 15, 2, 140-152 (1991)
[23] Heidari-Bateni, G.; Mcgillem, C. D., Chaotic direct-sequence spread-spectrum communication system, IEEE Trans. Commun., 42, 234, 1524-1527 (1994)
[24] Zhou, Y.; Hua, Z.; Pun, C. M.; Chen, C. L., Cascade chaotic system with applications, IEEE Trans. Cybern., 45, 9, 2001-2012 (2015)
[25] Wong, K. W.; Kwok, S. H.; Law, W. S., A fast image encryption scheme based on chaotic standard map, Phys. Lett. A, 372, 15, 2645-2652 (2008) · Zbl 1220.94044
[26] Tong, X., Design of an image encryption scheme based on a multiple chaotic map, Commun. Nonlinear Sci. Numer. Simul., 18, 7, 1725-1733 (2013) · Zbl 1321.94093
[27] Hu, H.; Xu, Y.; Zhu, Z., A method of improving the properties of digital chaotic system, Chaos Solitons Fractals, 38, 2, 439-446 (2008) · Zbl 1146.37322
[28] Cao, L.; Luo, Y.; Qiu, S.; Liu, J., A perturbation method to the tent map based on lyapunov exponent and its applicationa perturbation method to the tent map based on lyapunov exponent and its application, Chin. Phys. B, 24, 10, 78-85 (2015)
[29] Liu, S.; Sun, J.; Xu, Z.; Liu, J., Digital chaotic sequence generator based on coupled chaotic systems, Chin. Phys. B, 18, 12, 5219-5227 (2009)
[30] Liu, L.; Miao, S., A universal method for improving the dynamical degradation of a digital chaotic system, Phys. Scr., 90, 8, Article 085205 pp. (2015)
[31] Wang, X.; Wang, L., A new perturbation method to the tent map and its application, Chin. Phys. B, 20, 5, 191-198 (2011)
[32] Hua, Z.; Zhou, Y., Dynamic parameter-control chaotic system, IEEE Trans. Cybern., 46, 12, 3330-3341 (2016)
[33] Wang, Q.; Yu, S.; Li, C.; Lü, J.; Fang, X.; Guyeux, C.; Bahi, J. M., Theoretical design and fpga-based implementation of higher-dimensional digital chaotic systems, IEEE Trans. Circuits Syst. I Regular Papers, 63, 3, 401-412 (2016) · Zbl 1469.94118
[34] Miyabayashi, K.; Tonomura, O.; Kano, M.; Hasebe, S., Comparative study of state estimation of tubular microreactors using ukf and ekf, IFAC Proc. Volumes, 45, 15, 513-518 (2012)
[35] Julier, S. J.; Uhlmann, J. K., Unscented filtering and nonlinear estimation, Proc. IEEE, 92, 3, 401-422 (2004)
[36] Sarkka, S., On unscented kalman filtering for state estimation of continuous-time nonlinear systems, IEEE Trans. Autom. Control, 52, 9, 1631-1641 (2007) · Zbl 1366.93660
[37] Li, L.; Han, Q., An UKF-based nonlinear system identification method using interpolation models and backward integration, Struct. Control Health Monitor., 25, 4, 1545-2263 (2018)
[38] Liu, Y.; Luo, Y.; Song, S.; Cao, L.; Liu, J.; Harkin, J., Counteracting dynamical degradation of digital chaotic chebyshev map via perturbation, Int. J. Bifurcation Chaos, 27, 1-14 (2017) · Zbl 1360.37090
[39] Hu, H.; Deng, Y.; Liu, L., Counteracting the dynamical degradation of digital chaos via hybrid control, Commun. Nonlinear Sci. Numer. Simul., 19, 6, 1970-1984 (2014) · Zbl 1457.93007
[40] Deng, Y.; Hu, H.; Xiong, N.; Xiong, W.; Liu, L., A general hybrid model for chaos robust synchronization and degradation reduction, Inf. Sci., 305, 146-164 (2015) · Zbl 1360.93022
[41] Liu, L.; Lin, J.; Miao, S.; Liu, B., A double perturbation method for reducing dynamical degradation of the digital baker map, Int. J. Bifurcation Chaos, 27, 7, 1750103 (2017) · Zbl 1370.94038
[42] Pincus, S. M., Approximate entropy as a measure of system complexity, Proc. Natl. Acad. Sci. U.S.A., 88, 6, 2297-2301 (1991) · Zbl 0756.60103
[43] Wolf, A.; Swift, J. B.; Swinney, H. L.; Vastano, J. A., Determining Lyapunov exponents from a time series, Phys. D Nonlinear Phenomena, 16, 3, 285-317 (1985) · Zbl 0585.58037
[44] Rosenstein, M. T.; Collins, J. J.; Luca, C. J.D., A practical method for calculating largest Lyapunov exponents from small data sets, Phys. D-Nonlinear Phenomena, 65, 1-2, 117-134 (1993) · Zbl 0779.58030
[45] Eckmann, J. P.; Kamphorst, S. O.; Ruelle, D., Recurrence plots of dynamical systems, Europhys. Lett., 4, 9, 973-977 (1987)
[46] Rukhin, A. L., statistical test suite for random and pseudorandom number generators for cryptographic applications, Appl. Phys. Lett., 22, 7, 1179-1645 (2010)
[47] L’Ecuyer, P.; Simard, R., Testu01: a c library for empirical testing of random number generators, Acm Trans. Math. Software, 33, 4, 1-40 (2007) · Zbl 1365.65008
[48] Deng, Y.; Hu, H.; Xiong, W.; Xiong, N. N.; Liu, L., Analysis and design of digital chaotic systems with desirable performance via feedback control, IEEE Trans. Syst. Man Cybern. Syst., 45, 8, 1187-1200 (2015)
[49] Wang, X.; Xue, Q.; Lin, T., A novel true random number generator based on mouse movement and a one-dimensional chaotic map, Math. Probl. Eng., 2012, 2012, 95-100 (2012) · Zbl 1264.65007
[50] Liu, H.; Wang, X., Color image encryption based on one-time keys and robust chaotic maps, Comput. Math. Appl., 59, 10, 3320-3327 (2010) · Zbl 1198.94109
[51] Lambić, D., Cryptanalyzing a novel pseudorandom number generator based on pseudorandomly enhanced logistic map, Nonlinear Dyn., 89, 1, 1-3 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.