×

Euler class groups and motivic stable cohomotopy (with an appendix by Mrinal Kanti Das). (English) Zbl 1487.14053

There are several ways, with very different flavours, to attach an Euler class to a rank \(d\) vector bundle on an algebraic variety of dimension \(d\). This paper compares some of them, with extensive explanations.
Summary: “We study maps from a smooth scheme to a motivic sphere in the Morel-Voevodsky \(\mathbb{A}^1\)-homotopy category, i.e., motivic cohomotopy sets. Following Borsuk, we show that, in the presence of suitable hypotheses on the dimension of the source, motivic cohomotopy sets can be equipped with functorial abelian group structures. We then explore links between motivic cohomotopy groups, Euler class groups à la Nori-Bhatwadekar-Sridharan and Chow-Witt groups. We show that, again under suitable hypotheses on the base field \({k} \), if \({X}\) is a smooth affine \(k\)-variety of dimension \(d\), then the Euler class group of codimension \(d\) cycles coincides with the codimension \(d\) Chow-Witt group; the identification proceeds by comparing both groups with a suitable motivic cohomotopy group. As a byproduct, we describe the Chow group of zero cycles on a smooth affine \(k\)-scheme as the quotient of the free abelian group on zero cycles by the subgroup generated by reduced complete intersection ideals; this answers a question of S. Bhatwadekar and R. Sridharan.”
The authors make heavy use of the smooth quadric \(Q_{2n}\subset \mathbb A^{2n+1}_{\mathbb Z}\) with equation \[ \sum_{i=1}^n x_i y_i = z (1- z) . \]
One knows that \(Q_{2n}\) is a sphere from the standpoint of the Morel–Voevodsky \(\mathbb A^1\)-homotopy theory. “As a consequence, if \(X\) is a smooth scheme, by analogy with the ideas of Borsuk, we will call the set \([X,Q_{2n}]_{\mathbb A^1}\) of morphisms in the \(\mathbb A^1\)-homotopy category a motivic cohomotopy set (see Definition 1.3.1). Paralleling our discussion of cohomotopy above, our goals in this paper are
(i) to equip the set of free \(\mathbb A^1\)-homotopy classes of maps \([X,Q_{2n}]_{\mathbb A^1}\) with a functorial abelian group structure,
(ii) to study algebro-geometric analogs of the Hurewicz homomorphism and Hopf classification theorem and
(iii) to describe a presentation of \([X,Q_{2n}]_{\mathbb A^1}\) with explicit generators and relations.”
There is an appendix by Mrinal Kanti Das, that “attempts to streamline (e.g., clarify necessary hypotheses) the presentation of some results on Euler class groups used in the main body of the paper.”

MSC:

14F42 Motivic cohomology; motivic homotopy theory
13C10 Projective and free modules and ideals in commutative rings
19A13 Stability for projective modules
55Q55 Cohomotopy groups
Full Text: DOI

References:

[1] Arkowitz, M.: Introduction to Homotopy Theory. Universitext, Springer, New York (2011) Zbl 1232.55001 MR 2814476 · Zbl 1232.55001
[2] Asok, A., Doran, B., Fasel, J.: Smooth models of motivic spheres and the clutching construction. Int. Math. Res. Not. IMRN 2017, 1890-1925 (2017) Zbl 1405.14050 MR 3658186 · Zbl 1405.14050
[3] Asok, A., Fasel, J.: Algebraic vector bundles on spheres. J. Topol. 7, 894-926 (2014) Zbl 1326.14098 MR 3252968 · Zbl 1326.14098
[4] Asok, A., Fasel, J.: A cohomological classification of vector bundles on smooth affine threefolds. Duke Math. J. 163, 2561-2601 (2014) Zbl 1314.14044 MR 3273577 · Zbl 1314.14044
[5] Asok, A., Fasel, J.: Splitting vector bundles outside the stable range and A 1 -homotopy sheaves of punctured affine spaces. J. Amer. Math. Soc. 28, 1031-1062 (2015) Zbl 1329.14045 MR 3369908 · Zbl 1329.14045
[6] Asok, A., Fasel, J.: Comparing Euler classes. Q. J. Math. 67, 603-635 (2016) Zbl 1372.14013 MR 3609848 · Zbl 1372.14013
[7] Asok, A., Hoyois, M., Wendt, M.: Affine representability results in A 1 -homotopy theory, II: Principal bundles and homogeneous spaces. Geom. Topol. 22, 1181-1225 (2018) Zbl 1400.14061 MR 3748687 · Zbl 1400.14061
[8] Asok, A., Hoyois, M., Wendt, M.: Generically split octonion algebras and A 1 -homotopy theory. Algebra Number Theory 13, 695-747 (2019) Zbl 1430.14051 MR 3928340 · Zbl 1430.14051
[9] Asok, A., Hoyois, M., Wendt, M.: Affine representability results in A 1 -homotopy theory III: finite fields and complements. Algebr. Geom. 7, 634-644 (2020) Zbl 07262981 MR 4156421 · Zbl 1505.14050
[10] Asok, A., Wickelgren, K., Williams, B.: The simplicial suspension sequence in A 1 -homotopy. Geom. Topol. 21, 2093-2160 (2017) Zbl 1365.14027 MR 3654105 · Zbl 1365.14027
[11] Barge, J., Morel, F.: Groupe de Chow des cycles orientés et classe d’Euler des fibrés vectoriels. C. R. Acad. Sci. Paris Sér. I Math. 330, 287-290 (2000) Zbl 1017.14001 MR 1753295 · Zbl 1017.14001
[12] Bhatwadekar, S. M., Sridharan, R.: Projective generation of curves in polynomial extensions of an affine domain and a question of Nori. Invent. Math. 133, 161-192 (1998) Zbl 0936.13005 MR 1626485 · Zbl 0936.13005
[13] Bhatwadekar, S. M., Sridharan, R.: Zero cycles and the Euler class groups of smooth real affine varieties. Invent. Math. 136, 287-322 (1999) Zbl 0949.14005 MR 1688449 · Zbl 0949.14005
[14] Bhatwadekar, S. M., Sridharan, R.: The Euler class group of a Noetherian ring. Compos. Math. 122, 183-222 (2000) Zbl 0999.13007 MR 1775418 · Zbl 0999.13007
[15] Bhatwadekar, S. M., Sridharan, R.: On Euler classes and stably free projective modules. In: Algebra, Arithmetic and Geometry, Part I, II (Mumbai, 2000), Tata Inst. Fund. Res. Stud. Math. 16, Tata Institute of Fundamental Research, Bombay, 139-158 (2002) Zbl 1055.13009 MR 1940666 · Zbl 1055.13009
[16] Borsuk, K.: Sur les groupes des classes de transformations continues. C. R. Acad. Sci. Paris 202, 1400-1403 (1936) Zbl 62.0677.05 · JFM 62.0677.05
[17] Das, M. K.: The Euler class group of a polynomial algebra. J. Algebra 264, 582-612 (2003) Zbl 1106.13300 MR 1981423 · Zbl 1106.13300
[18] Das, M. K.: On triviality of the Euler class group of a deleted neighbourhood of a smooth local scheme. Trans. Amer. Math. Soc. 365, 3397-3411 (2013) Zbl 1284.13013 MR 3042589 · Zbl 1284.13013
[19] Das, M. K.: Remarks on Euler class groups and two conjectures. arXiv:1901.10686 (2019)
[20] Das, M. K., Ali Zinna, M.: “Strong” Euler class of a stably free module of odd rank. J. Algebra 432, 185-204 (2015) Zbl 1314.13018 MR 3334145 · Zbl 1314.13018
[21] Das, M. K., Keshari, M. K.: A question of Nori, Segre classes of ideals and other applications. J. Pure Appl. Algebra 216, 2193-2203 (2012) Zbl 1262.13014 MR 2925813 · Zbl 1262.13014
[22] Das, M. K., Sridharan, R.: Good invariants for bad ideals. J. Algebra 323, 3216-3229 (2010) Zbl 1200.14013 MR 2639974 · Zbl 1200.14013
[23] Dugger, D., Isaksen, D. C.: Motivic cell structures. Algebr. Geom. Topol. 5, 615-652 (2005) Zbl 1086.55013 MR 2153114 · Zbl 1086.55013
[24] Dundas, B. I., Röndigs, O., Østvaer, P. A.: Motivic functors. Doc. Math. 8, 489-525 (2003) Zbl 1042.55006 MR 2029171 · Zbl 1042.55006
[25] Dwyer, W. G., Kan, D. M.: An obstruction theory for diagrams of simplicial sets. Nederl. Akad. Wetensch. Indag. Math. 46, 139-146 (1984) Zbl 0555.55018 MR 749527 · Zbl 0555.55018
[26] Eisenbud, D., Evans, E. G., Jr.: Generating modules efficiently: theorems from algebraic K-theory. J. Algebra 27, 278-305 (1973) Zbl 0286.13012 MR 327742 · Zbl 0286.13012
[27] Fasel, J.: The Chow-Witt ring. Doc. Math. 12, 275-312 (2007) Zbl 1169.14302 MR 2350291 · Zbl 1169.14302
[28] Fasel, J.: Groupes de Chow-Witt. Mém. Soc. Math. Fr. (N.S.) viii+197 (2008) Zbl 1190.14001 MR 2542148 · Zbl 1190.14001
[29] Fasel, J.: Some remarks on orbit sets of unimodular rows. Comment. Math. Helv. 86, 13-39 (2011) Zbl 1205.13013 MR 2745274 · Zbl 1205.13013
[30] Fasel, J.: On the number of generators of ideals in polynomial rings. Ann. of Math. (2) 184, 315-331 (2016) Zbl 1372.13014 MR 3505181 · Zbl 1372.13014
[31] Fasel, J., Srinivas, V.: Chow-Witt groups and Grothendieck-Witt groups of regular schemes. Adv. Math. 221, 302-329 (2009) Zbl 1167.13006 MR 2509328 · Zbl 1167.13006
[32] Hopf, H.: Die Klassen der Abbildungen der n-dimensionalen Polyeder auf die n-dimensionale Sphäre. Comment. Math. Helv. 5, 39-54 (1933) Zbl 0005.31304 MR 1509466 · JFM 59.0559.03
[33] Hoyois, M.: From algebraic cobordism to motivic cohomology. J. Reine Angew. Math. 702, 173-226 (2015) Zbl 1382.14006 MR 3341470 · Zbl 1382.14006
[34] Jardine, J. F.: Local homotopy theory. Springer Monogr. Math., Springer, New York (2015) Zbl 1320.18001 MR 3309296 · Zbl 1320.18001
[35] Kumar, N. M., Murthy, M. P.: Algebraic cycles and vector bundles over affine three-folds. Ann. of Math. (2) 116, 579-591 (1982) Zbl 0519.14009 MR 678482 · Zbl 0519.14009
[36] Mandal, S., Mishra, B.: The monoid structure on homotopy obstructions. J. Algebra 540, 168-205 (2019) Zbl 1436.13021 MR 4003479 · Zbl 1436.13021
[37] Mandal, S., Yang, Y.: Intersection theory of algebraic obstructions. J. Pure Appl. Algebra 214, 2279-2293 (2010) Zbl 1195.13010 MR 2660913 · Zbl 1195.13010
[38] Mandal, S., Yang, Y.: Excision in algebraic obstruction theory. J. Pure Appl. Algebra 216, 2159-2169 (2012) Zbl 1272.13012 MR 2925810 · Zbl 1272.13012
[39] Milnor, J. W., Stasheff, J. D.: Characteristic Classes. Ann. of Math. Stud. 76, Princeton University Press, Princeton; University of Tokyo Press, Tokyo (1974) Zbl 0298.57008 MR 0440554 · Zbl 0298.57008
[40] Mohan Kumar, N.: Complete intersections. J. Math. Kyoto Univ. 17, 533-538 (1977) Zbl 0384.14016 MR 472851 · Zbl 0384.14016
[41] Morel, F.: The stable A 1 -connectivity theorems. K-Theory 35, 1-68 (2005) Zbl 1117.14023 MR 2240215 · Zbl 1117.14023
[42] Morel, F.: A 1 -Algebraic Topology over a Field. Lecture Notes in Math. 2052, Springer, Heidelberg (2012) Zbl 1263.14003 MR 2934577 · Zbl 1263.14003
[43] Morel, F., Voevodsky, V.: A 1 -homotopy theory of schemes. Publ. Math. Inst. Hautes Études Sci. 90, 45-143 (1999) Zbl 0983.14007 MR 1813224 · Zbl 0983.14007
[44] Murthy, M. P.: Zero cycles and projective modules. Ann. of Math. (2) 140, 405-434 (1994) Zbl 0839.13007 MR 1298718 · Zbl 0839.13007
[45] Murthy, M. P.: A survey of obstruction theory for projective modules of top rank. In: Alge-bra, K-Theory, Groups, and Education (New York, 1997), Contemp. Math. 243, American Mathematical Society, Providence, 153-174 (1999) · Zbl 0962.13008
[46] Murthy, M. P., Swan, R. G.: Vector bundles over affine surfaces. Invent. Math. 36, 125-165 (1976) Zbl 0362.14006 MR 439842 · Zbl 0362.14006
[47] Plumstead, B.: The conjectures of Eisenbud and Evans. Amer. J. Math. 105, 1417-1433 (1983) Zbl 0532.13008 MR 722004 · Zbl 0532.13008
[48] Schlichting, M.: Euler class groups and the homology of elementary and special linear groups. Adv. Math. 320, 1-81 (2017) Zbl 1387.19002 MR 3709100 · Zbl 1387.19002
[49] Serre, J.-P.: Faisceaux algébriques cohérents. Ann. of Math. (2) 61, 197-278 (1955) Zbl 0067.16201 MR 68874 · Zbl 0067.16201
[50] Spanier, E.: Borsuk’s cohomotopy groups. Ann. of Math. (2) 50, 203-245 (1949) Zbl 0032.12402 MR 29170 · Zbl 0032.12402
[51] van der Kallen, W.: A group structure on certain orbit sets of unimodular rows. J. Algebra 82, 363-397 (1983) Zbl 0518.20035 MR 704762 · Zbl 0518.20035
[52] van der Kallen, W.: A module structure on certain orbit sets of unimodular rows. J. Pure Appl. Algebra 57, 281-316 (1989) Zbl 0665.18011 MR 987316 · Zbl 0665.18011
[53] van der Kallen, W.: From Mennicke symbols to Euler class groups. In: Algebra, Arithmetic and Geometry, Part I, II (Mumbai, 2000), Tata Inst. Fund. Res. Stud. Math. 16, Tata Institute of Fundamental Research, Bombay, 341-354 (2002) Zbl 1027.19006 MR 1940672 · Zbl 1027.19006
[54] van der Kallen, W.: Extrapolating an Euler class. J. Algebra 434, 65-71 (2015) Zbl 1332.13009 MR 3342385 · Zbl 1332.13009
[55] Weibel, C. A.: Complete intersection points on affine varieties. Comm. Algebra 12, 3011-3051 (1984) Zbl 0551.13004 MR 764660 · Zbl 0551.13004
[56] Weibel, C. A.: Homotopy algebraic K-theory. In: Algebraic K-Theory and Algebraic Number Theory (Honolulu, 1987), Contemp. Math. 83, American Mathematical Society, Providence, 461-488 (1989) Zbl 0669.18007 MR 991991 · Zbl 0669.18007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.