×

Characteristic parameterizations of surfaces with a constant ratio of principal curvatures. (English) Zbl 1489.65045

Summary: Motivated by applications in architectural geometry, we study and compute surfaces with a constant ratio of principal curvatures (CRPC surfaces) based on their characteristic parameterizations. For negative Gaussian curvature \(K\), these parameterizations are asymptotic. For positive \(K\) they are conjugate and symmetric with respect to the principal curvature directions. CRPC surfaces are described by characteristic parameterizations whose parameter lines form a constant angle. We use them to derive characteristic parameterizations of rotational CRPC surfaces in a simple geometric way. Pairs of such surfaces with principal curvature ratio \(\kappa_1 / \kappa_2 = \pm a\) can be seen as equilibrium shapes and reciprocal force diagrams of each other. We then introduce discrete CRPC surfaces, expressed via discrete isogonal characteristic nets, and show how to efficiently compute them through numerical optimization. In particular, we derive discrete helical and spiral CRPC surfaces. We provide various ways how these and other special types of CRPC surfaces can serve as a basis for computational design of more general CRPC surfaces. Our computational tools may also serve as an experimental basis for mathematical studies of the largely unexplored class of CRPC surfaces.

MSC:

65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Blaschke, W., Differentialgeometrie 1 (1930), Springer: Springer Berlin · JFM 56.0612.04
[2] Bobenko, A., König, B., Hoffmann, T., Sechelmann, S., 2015. S-conical minimal surfaces. Towards a unified theory of discrete minimal surfaces. TU Berlin. Preprint.
[3] Bobenko, A. I.; Suris, Yu. B., Discrete Differential Geometry. Integrable Structure, Graduate Studies in Mathematics, vol. 98 (2008), American Mathematical Society · Zbl 1158.53001
[4] Cohen-Steiner, D.; Morvan, J.-M., Restricted Delaunay triangulations and normal cycle, (Proc. Symposium on Computational Geometry (2003)), 312-321 · Zbl 1422.65051
[5] Finsterwalder, S., Mechanische Beziehungen bei der Flächendeformation, Jahresber. Dtsch. Math.-Ver., 6, 43-90 (1899) · JFM 30.0623.02
[6] Hofer, M.; Odehnal, B.; Pottmann, H.; Steiner, T.; Wallner, J., 3d shape recognition and reconstruction based on line element geometry, (Intl. Conference on Computer Vision (ICCV), vol. 2 (2005), IEEE), 1532-1538
[7] Hopf, H., Über Flächen mit einer Relation zwischen den Hauptkrümmungen, Math. Nachr., 4, 232-249 (1951) · Zbl 0042.15703
[8] Jiang, C.; Wang, C.; Rist, F.; Wallner, J.; Pottmann, H., Quad-mesh based isometric mappings and developable surfaces, ACM Trans. Graph. (TOG), 39, 4, Article 128 pp. (2020)
[9] Jiang, C.; Wang, C.; Schling, E.; Pottmann, H., Computational design and optimization of quad meshes based on diagonal meshes, (Advances in Architectural Geometry (2021))
[10] Jiang, C.; Wang, H.; Inza, V. C.; Dellinger, F.; Rist, F.; Wallner, J.; Pottmann, H., Using isometries for computational design and fabrication, ACM Trans. Graph. (TOG), 40, 4, Article 42 pp. (2021)
[11] Jimenez, M. R., Note on surfaces of revolution with an affine-linear relation between their curvature radii, ArXiv eprint
[12] Jimenez, M. R.; Müller, C.; Pottmann, H., Discretizations of surfaces with constant ratio of principal curvatures, Discrete Comput. Geom., 63, 3, 670-704 (2020) · Zbl 1436.52016
[13] Kühnel, W., Differentialgeometrie, Aufbaukurs Mathematik (2013), Springer Spektrum: Springer Spektrum Wiesbaden · Zbl 1262.53001
[14] López, R., Linear Weingarten surfaces in Euclidean and hyperbolic space, Mat. Contemp., 35, 95-113 (2008) · Zbl 1192.53060
[15] Lopez, R.; Pampano, A., Classification of rotational surfaces in Euclidean space satisfying a linear relation between their principal curvatures, Math. Nachr., 293, 735-753 (2020) · Zbl 1527.53008
[16] Michell, A. G.M., The limit of economy of material in frame-structures, Philos. Mag., Ser. VI, 8, 589-597 (1904) · JFM 35.0828.01
[17] Mladenov, I. M.; Oprea, J., The Mylar balloon revisited, Am. Math. Mon., 110, 9, 761-784 (2003) · Zbl 1044.33008
[18] Mladenov, I. M.; Oprea, J., The Mylar balloon: new viewpoints and generalizations, (Geometry, Integrability and Quantization (2007), Softex: Softex Sofia), 246-263 · Zbl 1123.53006
[19] Müller, E., Relative Minimalflächen, Monatshefte Math. Phys., 31, 1-19 (1921) · JFM 48.0810.04
[20] Odehnal, B.; Pottmann, H.; Wallner, J., Equiform kinematics and the geometry of line elements, Beitr. Algebra Geom., 47, 2, 567-582 (2006) · Zbl 1122.53008
[21] Pellis, D.; Wang, H.; Kilian, M.; Rist, F.; Pottmann, H.; Müller, C., Principal symmetric meshes, ACM Trans. Graph. (TOG), 39, 4, Article 127 pp. (2020)
[22] Pellis, D.; Kilian, M.; Pottmann, H.; Pauly, M., Computational design of Weingarten surfaces, ACM Trans. Graph. (TOG), 40, 4, Article 114 pp. (2021)
[23] Pellis, D.; Kilian, M.; Wang, H.; Jiang, C.; Müller, C.; Pottmann, H., Architectural freeform surfaces designed for cost-effective paneling mold re-use, (Advances in Architectural Geometry (2021))
[24] Pottmann, H., Zwei Verallgemeinerungen der Böschungslinien, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 191, 8-9, 311-324 (1982) · Zbl 0515.53002
[25] Pottmann, H.; Wallner, J., Computational Line Geometry (2001), Springer · Zbl 1006.51015
[26] Rabinovich, M.; Hoffmann, T.; Sorkine-Hornung, O., Discrete geodesic nets for modeling developable surfaces, ACM Trans. Graph. (TOG), 37, 2, Article 16 pp. (2018)
[27] Riveros, C. M.C.; Corro, A. M.V., Surfaces with constant Chebyshev angle, Tokyo J. Math., 35, 2, 359-366 (2012) · Zbl 1278.53013
[28] Riveros, C. M.C.; Corro, A. M.V., Surfaces with constant Chebyshev angle II, Tokyo J. Math., 36, 2, 379-386 (2013) · Zbl 1294.30092
[29] Sauer, R., Differenzengeometrie (1970), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0199.25001
[30] Schling, E., Repetitive structures (2018), TU Munich, Ph.D. thesis
[31] Schling, E.; Kilian, M.; Wang, H.; Schikore, D.; Pottmann, H., Design and construction of curved support structures with repetitive parameters, (Hesselgren, L.; Kilian, A.; Malek, S.; Olsson, K.-G.; Sorkine-Hornung, O.; Williams, C., Advances in Architectural Geometry (2018), Klein Publishing Ltd.), 140-165
[32] Stäckel, P., Beiträge zur Flächentheorie. III. Zur Theorie der Minimalflächen, 491-497 (1896), Leipziger Berichte
[33] Strubecker, K., Differentialgeometrie II (1969), Walter de Gruyter: Walter de Gruyter Berlin · Zbl 0169.23501
[34] Tang, C.; Sun, X.; Gomes, A.; Wallner, J.; Pottmann, H., Form-finding with polyhedral meshes made simple, ACM Trans. Graph. (TOG), 33, 4, Article 70 pp. (2014) · Zbl 1396.65066
[35] Tellier, X., Morphogenesis of curved structural envelopes under fabrication constraints (2020), Univ. Paris-Est, Ph.D. thesis
[36] Tellier, X.; Douthe, C.; Hauswirth, L.; Baravel, O., Caravel meshes: a new geometrical strategy to rationalize curved envelopes, Structures, 28, 1210-1228 (2020)
[37] Wang, H.; Pellis, D.; Rist, F.; Pottmann, H.; Müller, C., Discrete geodesic parallel coordinates, ACM Trans. Graph. (TOG), 38, 6, Article 173 pp. (2019)
[38] Weingarten, J., Über eine Klasse aufeinander abwickelbarer Flächen, J. Reine Angew. Math., 59, 382-393 (1861) · ERAM 059.1573cj
[39] Wunderlich, W., Raumkurven, die pseudogeodätische Linien eines Zylinders und eines Kegels sind, Compos. Math., 8, 169-184 (1950) · Zbl 0037.38902
[40] Wunderlich, W., Beitrag zur Kenntnis der Minimalschraubflächen, Compos. Math., 10, 297-311 (1952) · Zbl 0047.40502
[41] Wunderlich, W., Beitrag zur Kenntnis der Minimalspiralflächen, Rend. Math., 13, 1-15 (1954) · Zbl 0056.40304
[42] Wunderlich, W., Darstellende Geometrie II (1967), Bibliographisches Institut: Bibliographisches Institut Mannhein · Zbl 0162.28002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.