×

Positive definite functions on products via Fourier transforms: old and new. (English) Zbl 1490.42012

Summary: A number of consistent models describing stationary positive definite functions on \(\mathbb{R}^m \times \mathbb{R}^n\) stem from Bochner’s celebrated theorem characterizing continuous and stationary positive definite functions on \(\mathbb{R}^m\). If \(\mathbb{S}^m\) denotes the unit sphere in \(\mathbb{R}^{m+1}\), the same is true of positive definite functions on \(\mathbb{S}^m \times \mathbb{R}^n\) which are radial with respect to the \(\mathbb{S}^m\) component and stationary with respect to the \(\mathbb{R}^n\) component. In this paper, we summarize results on these topics, mainly those that somehow characterize the positive definiteness of the function through Fourier transforms of the sections of the function itself. We present a new perspective on the existent results in the literature along with new characterizations and applications.

MSC:

42A82 Positive definite functions in one variable harmonic analysis
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
42A16 Fourier coefficients, Fourier series of functions with special properties, special Fourier series
43A35 Positive definite functions on groups, semigroups, etc.
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Berg, C.; Christensen, J. P. R.; Ressel, P., Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions: 100 (Graduate Texts in Mathematics) (1984), New York: Springer-Verlag, New York · Zbl 0619.43001
[2] Wendland, H., Cambridge Monographs on Applied and Computational Mathematics, Scattered data approximation, 17 (2005), Cambridge: Cambridge University, Cambridge · Zbl 1075.65021
[3] Folland, G. B., Textbooks in Mathematics, A course in abstract harmonic analysis (2016), Boca Raton: CRC Press, Boca Raton · Zbl 1342.43001
[4] Gneiting, T., Nonseparable, stationary covariance functions for space-time data, J. Amer. Stat. Assoc, 97, 458, 590-600 (2002) · Zbl 1073.62593
[5] Cressie, N.; Huang, H.-C., Classes of nonseparable, spatio-temporal stationary covariance functions, J. Amer. Stat. Assoc, 94, 448, 1330-1340 (1999) · Zbl 0999.62073
[6] Szegö, G., Orthogonal Polynomials, 23 (1975), Providence, RI: American Mathematical Society (AMS), Providence, RI · Zbl 0305.42011
[7] Rudin, W., Wiley Classics Library. A Wiley-Interscience Publication, Fourier analysis on groups (1990), New York: John Wiley & Sons, New York · Zbl 0698.43001
[8] Zastavnyi, V.; Porcu, E., Characterization theorems for the Gneiting class of space-time covariances, Bernoulli, 17, 1, 456-465 (2011) · Zbl 1284.62592
[9] Rudin, W., Real and Complex Analysis, (1987), New York: McGraw-Hill Book Co, New York · Zbl 0925.00005
[10] Menegatto, V. A., Positive definite functions on products of metric spaces via generalized Stieltjes functions, Proc. Amer. Math. Soc, 148, 11, 4781-4795 (2020) · Zbl 1446.42007
[11] Horn, R. A.; Johnson, C. R., Matrix Analysis (2013), Cambridge: Cambridge University Press, Cambridge · Zbl 1267.15001
[12] Guella, J., On Gaussian kernels on Hilbert spaces and kernels on hyperbolic spaces, arXiv:2007.14697 (2020)
[13] Schoenberg, I. J., Positive definite functions on spheres, Duke Math. J, 9, 1, 96-108 (1942) · Zbl 0063.06808
[14] Berg, C.; Porcu, E., From Schoenberg coefficients to Schoenberg functions, Constr Approx, 45, 2, 217-241 (2017) · Zbl 1362.43004
[15] Guella, J. C.; Menegatto, V. A., Schoenberg’s theorem for positive definite functions on products: a unifying framework, J Fourier Anal Appl, 25, 4, 1424-1446 (2019) · Zbl 1420.42005
[16] de Barra, G., Horwood Publishing Series. Mathematics and Its Applications., Measure theory and integration (2003), Chichester: Horwood Publishing Limited, Chichester · Zbl 1098.28001
[17] White, P.; Porcu, E., Towards a complete picture of stationary covariance functions on spheres cross time, Electron. J. Stat, 13, 2, 2566-2594 (2019) · Zbl 1426.62285
[18] Menegatto, V. A.; Oliveira, C. P., Positive definiteness on products of compact two-point homogeneous spaces and locally compact abelian groups, Can. Math. Bull, 63, 4, 705-715 (2020) · Zbl 1465.43005
[19] Akhiezer, N. I.; McFaden, H. H., Translations of Mathematical Monographs, 70, Lectures on integral transforms (1988), Providence: American Mathematical Society, Providence · Zbl 0652.44001
[20] Stein, E. M.; Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, No. 32 (1971), Princeton: Princeton University Press, Princeton · Zbl 0232.42007
[21] Bhatia, R.; Parthasarathy, K. R., Positive definite functions and operator inequalities, Bull. London Math. Soc, 32, 2, 214-228 (2000) · Zbl 1037.15021
[22] Buescu, J.; Paixão, A. C.; Garcia, F.; Lourtie, I., Positive-definiteness, integral equations an Fourier transforms, J. Integral Equations Appl, 16, 1, 33-52 (2004) · Zbl 1087.45006
[23] Hinrichs, A.; Vybíral, J., On positive positive-definite functions and Bochner’s theorem, J. Complexity., 27, 3-4, 264-272 (2011) · Zbl 1242.41028
[24] Wu, Z., Generalized Bochner’s theorem for radial functions, Approx Theory Appl, 13, 1, 57-57 (1997)
[25] Berg, C., A unified view of space-time covariance functions through Gelfand pairs, J. Fourier Anal. Appl, 26, 6, 26 (2020) · Zbl 1465.43002
[26] Buescu, J.; Paixão, A. C.; Oliveira, C. P., Propagation of regularity and positive definiteness: a constructive approach, Z. Anal. Anwend, 37, 1, 1-24 (2018) · Zbl 1387.42004
[27] Oliveira, C. P., Fundamental sets of functions on locally Abelian groups, Numer. Funct. Anal. Optim, 36, 5, 644-657 (2015) · Zbl 1332.43003
[28] Oliveira, C. P.; Buescu, J., Universal kernels which are continuous on the diagonal, Positivity., 23, 3, 637-650 (2019) · Zbl 1423.43007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.