Cao, Yalong; Maulik, Davesh; Toda, Yukinobu Stable pairs and Gopakumar-Vafa type invariants for Calabi-Yau \(4\)-folds. (English) Zbl 1491.14077 J. Eur. Math. Soc. (JEMS) 24, No. 2, 527-581 (2022). This paper studies the relationship between two types of enumerative invariants of Calabi-Yau \(4\)-folds \(X\). Pandharipande-Thomas (PT) invariants count pairs \(s\colon \mathcal{O}_X \to \mathcal{E}\), consisting of a pure \(1\)-dimensional coherent sheaf \(\mathcal{E}\) on \(X\) and a section \(s\), satisfying a certain stability condition. On the other hand, Gopakumar-Vafa (GV) invariants are conjecturally-integer quantities underlying the Gromov-Witten (GW) theory of \(X\), defined formally from its multiple-cover formulas. Earlier work [R. Pandharipande and R. P. Thomas, J. Am. Math. Soc. 23, No. 1, 267–297 (2010; Zbl 1250.14035)] proposed a relationship between PT and GV invariants for CY3s. The recent construction in [D. Borisov and D. Joyce, Geom. Topol. 21, No. 6, 3231–3311 (2017; Zbl 1390.14008)] of virtual fundamental classes \([M]^{\mathrm{vir}}\) for moduli spaces \(M\) of sheaves on CY4s enables the generalization of such a PT/GV correspondence to CY4s, modulo the (new) problem of how to consistently pick certain required orientation data for \(M\).The main conjecture of this paper is that, for a suitable choice of orientation data, \begin{align*} P_{1,\beta}(\gamma_1, \ldots, \gamma_m) &= \sum_{\substack{\beta_1+\beta_2=\beta\\ \beta_1,\beta_2\ge 0}} n_{0,\beta_1}(\gamma_1, \ldots, \gamma_m) \cdot P_{0,\beta_2} \\ \sum_{\beta \ge 0} P_{0,\beta} q^\beta &= \prod_{\beta > 0} M(q^\beta)^{n_{1,\beta}} \end{align*} where the \(P_{n,\beta}\) (resp. \(n_{g,\beta}\)) are PT invariants (resp. GV invariants) of \(X\) in class \(\beta\), and \(M(q) = \prod_{k > 0} (1-q^k)^{-k}\) is the MacMahon function. Note that when \(n= \chi(\mathcal{E})=1\), non-trivial descendent insertions \(\gamma_i \in H^*(X; \mathbb{Z})\) are required for \(P_{1,\beta}\) to be non-zero, and when genus \(g>1\), GW and therefore the GV invariants \(n_{g,\beta}\) vanish on \(4\)-folds.Many independent pieces of evidence are given to support the conjecture. A general proof is given assuming all relevant families of curves in \(X\) deform with expected properties. Explicit computational checks, for certain curve classes \(\beta\), are also given for: (compact case) sextic hypersurfaces, elliptic fibrations over \(\mathbb{P}^3\), and products of elliptic curves and CY3s; (non-compact case) local Fano \(3\)-folds, and local \(\mathbb{P}^1\) and elliptic curves. Many of these computations proceed by reduction to known conjectures/results for \(3\)-folds (e.g. [Y. Cao, Commun. Contemp. Math. 22, No. 7, Article ID 1950060, 25 p. (2020; Zbl 1452.14053)]) or genus-\(0\) GV for CY4s defined using \(4\)-fold Donaldson-Thomas invariants (e.g. [Y. Cao et al., Adv. Math. 338, 41–92 (2018; Zbl 1408.14177)]). Such reductions, especially to moduli spaces of sheaves on \(X\) of lower dimension, often give non-trivial insights on the correct choice of orientation in the \(4\)-fold setting. Finally, invariants for local curves are computed in low degrees via equivariant localization. Reviewer: Huaxin Liu (Oxford) Cited in 5 ReviewsCited in 14 Documents MSC: 14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects) 14J32 Calabi-Yau manifolds (algebro-geometric aspects) Keywords:stable pairs; Gopakumar-Vafa type invariants; Calabi-Yau \(4\)-folds Citations:Zbl 1250.14035; Zbl 1390.14008; Zbl 1452.14053; Zbl 1408.14177 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Behrend, K., Fantechi, B.: The intrinsic normal cone. Invent. Math. 128, 45-88 (1997) Zbl 0909.14006 MR 1437495 · Zbl 0909.14006 [2] Behrend, K., Fantechi, B.: Symmetric obstruction theories and Hilbert schemes of points on threefolds. Algebra Number Theory 2, 313-345 (2008) Zbl 1170.14004 MR 2407118 · Zbl 1170.14004 [3] Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Comm. Math. Phys. 165, 311-427 (1994) Zbl 0815.53082 MR 1301851 · Zbl 0815.53082 [4] Borisov, D., Joyce, D.: Virtual fundamental classes for moduli spaces of sheaves on Calabi-Yau four-folds. Geom. Topol. 21, 3231-3311 (2017) Zbl 1390.14008 MR 3692967 · Zbl 1390.14008 [5] Cao, Y.: Counting conics on sextic 4-folds. Math. Res. Lett. 26, 1343-1357 (2019) Zbl 1430.14082 MR 4049812 · Zbl 1430.14082 [6] Cao, Y.: Genus zero Gopakumar-Vafa type invariants for Calabi-Yau 4-folds II: Fano 3-folds. Comm. Contemp. Math. 22, art. 1950060, 25 pp. (2020) Zbl 1452.14053 MR 4135009 · Zbl 1452.14053 [7] Cao, Y., Gross, J., Joyce, D.: Orientability of moduli spaces of Spin.7/-instantons and coherent sheaves on Calabi-Yau 4-folds. Adv. Math. 368, art. 107134, 60 pp. (2020) Zbl 1443.14056 MR 4085139 · Zbl 1443.14056 [8] Cao, Y., Kool, M.: Zero-dimensional Donaldson-Thomas invariants of Calabi-Yau 4-folds. Adv. Math. 338, 601-648 (2018) Zbl 1420.14126 MR 3861713 · Zbl 1420.14126 [9] Cao, Y., Kool, M.: Curve counting and DT/PT correspondence for Calabi-Yau 4-folds. Adv. Math. 375, art. 107371, 49 pp. (2020) Zbl 1451.14122 MR 4135421 · Zbl 1451.14122 [10] Cao, Y., Kool, M., Monavari, S.: Stable pair invariants of local Calabi-Yau 4-folds. arXiv:2004.09355 (2020) [11] Cao, Y., Leung, N. C.: Orientability for gauge theories on Calabi-Yau manifolds. Adv. Math. 314, 48-70 (2017) Zbl 1365.14071 MR 3658712 · Zbl 1365.14071 [12] Cao, Y., Leung, N. C.: Donaldson-Thomas theory for Calabi-Yau 4-folds. arXiv:1407.7659v2 (2015) [13] Cao, Y., Maulik, D., Toda, Y.: Genus zero Gopakumar-Vafa type invariants for Calabi-Yau 4-folds. Adv. Math. 338, 41-92 (2018) Zbl 1408.14177 MR 3861701 · Zbl 1408.14177 [14] Cao, Y., Toda, Y.: Gopakumar-Vafa type invariants on Calabi-Yau 4-folds via descendent insertions. Comm. Math. Phys. 383, 281-310 (2021) Zbl 07333681 MR 4236066 · Zbl 1470.14113 [15] Cao, Y., Toda, Y.: Curve counting via stable objects in derived categories of Calabi-Yau 4-folds. arXiv:1909.04897 (2020) [16] Cao, Y., Toda, Y.: Counting perverse coherent systems on Calabi-Yau 4-folds. arXiv:2009.10909 (2020) [17] Gerhardus, A., Jockers, H.: Quantum periods of Calabi-Yau fourfolds. Nucl. Phys. B 913, 425-474 (2016) Zbl 1349.81155 · Zbl 1349.81155 [18] Gopakumar, R., Vafa, C.: M-theory and topological strings-II. hep-th/9812127 (1998) [19] Huybrechts, D., Lehn, M.: The Geometry of Moduli Spaces of Sheaves. Aspects Math. E31, Vieweg, Braunschweig (1997) Zbl 0872.14002 MR 1450870 · Zbl 0872.14002 [20] Huybrechts, D., Thomas, R. P.: Deformation-obstruction theory for complexes via Atiyah and Kodaira-Spencer classes. Math. Ann. 346, 545-569 (2010) Zbl 1186.14014 MR 2578562 · Zbl 1186.14014 [21] Joyce, D., Song, Y.: A theory of generalized Donaldson-Thomas invariants. Mem. Amer. Math. Soc. 217, no. 1020, iv+199 pp. (2012) Zbl 1259.14054 MR 2951762 · Zbl 1259.14054 [22] Katz, S.: Genus zero Gopakumar-Vafa invariants of contractible curves. J. Differential Geom. 79, 185-195 (2008) Zbl 1142.32011 MR 2420017 · Zbl 1142.32011 [23] Kiem, Y.-H., Li, J.: Localizing virtual cycles by cosections. J. Amer. Math. Soc. 26, 1025-1050 (2013) Zbl 1276.14083 MR3073883 · Zbl 1276.14083 [24] Klemm, A., Pandharipande, R.: Enumerative geometry of Calabi-Yau 4-folds. Comm. Math. Phys. 281, 621-653 (2008) Zbl 1157.32022 MR 2415462 · Zbl 1157.32022 [25] Kool, M., Thomas, R.: Reduced classes and curve counting on surfaces I: theory. Algebr. Geom. 1, 334-383 (2014) Zbl 1322.14085 MR 3238154 · Zbl 1322.14085 [26] Kool, M., Monavari, S.: private discussions [27] Levine, M., Pandharipande, R.: Algebraic cobordism revisited. Invent. Math. 176, 63-130 (2009) Zbl 1210.14025 MR 2485880 · Zbl 1210.14025 [28] Li, J.: Zero dimensional Donaldson-Thomas invariants of threefolds. Geom. Topol. 10, 2117-2171 (2006) Zbl 1140.14012 MR 2284053 · Zbl 1140.14012 [29] Li, J., Tian, G.: Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties. J. Amer. Math. Soc. 11, 119-174 (1998) Zbl 0912.14004 MR 1467172 · Zbl 0912.14004 [30] Manolache, C.: Virtual push-forwards. Geom. Topol. 16, 2003-2036 (2012) Zbl 1255.14007 MR 2975298 · Zbl 1255.14007 [31] Maulik, D.: Gromov-Witten theory of A n -resolutions. Geom. Topol. 13, 1729-1773 (2009) Zbl 1184.14085 MR 2496055 · Zbl 1184.14085 [32] Maulik, D., Nekrasov, N., Okounkov, A., Pandharipande, R.: Gromov-Witten theory and Donaldson-Thomas theory. I. Compos. Math. 142, 1263-1285 (2006) Zbl 1108.14046 MR 2264664 · Zbl 1108.14046 [33] Pandharipande, R.: Hodge integrals and degenerate contributions. Comm. Math. Phys. 208, 489-506 (1999) Zbl 0953.14036 MR 1729095 · Zbl 0953.14036 [34] Pandharipande, R., Thomas, R. P.: Curve counting via stable pairs in the derived category. Invent. Math. 178, 407-447 (2009) Zbl 1204.14026 MR 2545686 · Zbl 1204.14026 [35] Pandharipande, R., Thomas, R. P.: The 3-fold vertex via stable pairs. Geom. Topol. 13, 1835-1876 (2009) Zbl 1195.14073 MR 2497313 · Zbl 1195.14073 [36] Pandharipande, R., Thomas, R. P.: Stable pairs and BPS invariants. J. Amer. Math. Soc. 23, 267-297 (2010) Zbl 1250.14035 MR 2552254 · Zbl 1250.14035 [37] Pantev, T., Toën, B., Vaquié, M., Vezzosi, G.: Shifted symplectic structures. Publ. Math. Inst. Hautes Études Sci. 117, 271-328 (2013) Zbl 1328.14027 MR 3090262 · Zbl 1328.14027 [38] Popa, A.: The genus one Gromov-Witten invariants of Calabi-Yau complete intersections. Trans. Amer. Math. Soc. 365, 1149-1181 (2013) Zbl 1273.14116 MR 3003261 · Zbl 1273.14116 [39] Schürg, T., Toën, B., Vezzosi, G.: Derived algebraic geometry, determinants of perfect com-plexes, and applications to obstruction theories for maps and complexes. J. Reine Angew. Math. 702, 1-40 (2015) Zbl 1320.14033 MR 3341464 · Zbl 1320.14033 [40] Thomas, R. P.: A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibrations. J. Differential Geom. 54, 367-438 (2000) Zbl 1034.14015 MR 1818182 · Zbl 1034.14015 [41] Toda, Y.: Stability conditions and curve counting invariants on Calabi-Yau 3-folds. Kyoto J. Math. 52, 1-50 (2012) Zbl 1244.14047 MR 2892766 · Zbl 1244.14047 [42] Toda, Y.: Multiple cover formula of generalized DT invariants II. Jacobian locatizations. arXiv:1108.4993 (2011) [43] Zinger, A.: Standard versus reduced genus-one Gromov-Witten invariants. Geom. Topol. 12, 1203-1241 (2008) Zbl 1167.14009 MR 2403808 · Zbl 1167.14009 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.