×

Stable implementation of adaptive IGABEM in 2D in MATLAB. (English) Zbl 1492.65039

Summary: We report on the Matlab program package IGABEM2D which provides an easily accessible implementation of adaptive Galerkin boundary element methods in the frame of isogeometric analysis and which is available on the web for free download. Numerical experiments with IGABEM2D underline the particular importance of adaptive mesh refinement for high accuracy in isogeometric analysis.

MSC:

65D07 Numerical computation using splines
65N38 Boundary element methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65Y20 Complexity and performance of numerical algorithms
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] A. Aimi, F. Calabrò, M. Diligenti, M. L. Sampoli, G. Sangalli and A. Sestini, Efficient assembly based on B-spline tailored quadrature rules for the IgA-SGBEM, Comput. Methods Appl. Mech. Engrg. 331 (2018), 327-342. · Zbl 1439.65207
[2] A. Aimi, M. Diligenti, M. L. Sampoli and A. Sestini, Isogemetric analysis and symmetric Galerkin BEM: A 2D numerical study, Appl. Math. Comput. 272 (2016), no. part 1, 173-186. · Zbl 1410.65468
[3] J. Alberty, C. Carstensen and S. A. Funken, Remarks around 50 lines of Matlab: Short finite element implementation, Numer. Algorithms 20 (1999), no. 2-3, 117-137. · Zbl 0938.65129
[4] M. Aurada, M. Feischl, T. Führer, M. Karkulik and D. Praetorius, Efficiency and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods, Comput. Methods Appl. Math. 13 (2013), no. 3, 305-332. · Zbl 1285.65070
[5] C. Bahriawati and C. Carstensen, Three MATLAB implementations of the lowest-order Raviart-Thomas MFEM with a posteriori error control, Comput. Methods Appl. Math. 5 (2005), no. 4, 333-361. · Zbl 1086.65107
[6] A. Bantle, On high-order NURBS-based boundary element methods in two dimensions-numerical integration and implementation, PhD thesis, University of Ulm, 2015.
[7] G. Beer, B. Marussig and C. Duenser, The Isogeometric Boundary Element Method, Lect. Notes Appl. Comput. Mech. 90, Springer, Cham, 2020. · Zbl 1422.65001
[8] A. Buffa, G. Gantner, C. Giannelli, D. Praetorius and R. Vázquez, Mathematical foundations of adaptive isogeometric analysis, preprint (2021), https://arxiv.org/abs/2107.02023.
[9] A. Buffa and C. Giannelli, Adaptive isogeometric methods with hierarchical splines: Error estimator and convergence, Math. Models Methods Appl. Sci. 26 (2016), no. 1, 1-25. · Zbl 1336.65181
[10] A. Buffa and C. Giannelli, Adaptive isogeometric methods with hierarchical splines: Optimality and convergence rates, Math. Models Methods Appl. Sci. 27 (2017), no. 14, 2781-2802. · Zbl 1376.41004
[11] J. A. Cottrell, T. J. R. Hughes and Y. Bazilevs, Isogeometric Analysis, John Wiley & Sons, Chichester, 2009.
[12] C. de Boor, B (asic)-spline basics, Technical report, Mathematics Research Center, University of Wisconsin-Madison, 1986.
[13] J. Dölz, H. Harbrecht, S. Kurz, M. Multerer, S. Schöps and F. Wolf, Bembel: The fast isogeometric boundary element C++ library for Laplace, Helmholtz, and electric wave equation, SoftwareX 11 (2020), Article ID 100476.
[14] J. Dölz, H. Harbrecht, S. Kurz, S. Schöps and F. Wolf, A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems, Comput. Methods Appl. Mech. Engrg. 330 (2018), 83-101. · Zbl 1439.65208
[15] J. Dölz, H. Harbrecht and M. Peters, An interpolation-based fast multipole method for higher-order boundary elements on parametric surfaces, Internat. J. Numer. Methods Engrg. 108 (2016), no. 13, 1705-1728.
[16] J. Dölz, S. Kurz, S. Schöps and F. Wolf, Isogeometric boundary elements in electromagnetism: Rigorous analysis, fast methods, and examples, SIAM J. Sci. Comput. 41 (2019), no. 5, B983-B1010. · Zbl 07123202
[17] A. Falini, C. Giannelli, T. Kanduč, M. L. Sampoli and A. Sestini, An adaptive IgA-BEM with hierarchical B-splines based on quasi-interpolation quadrature schemes, Internat. J. Numer. Methods Engrg. 117 (2019), no. 10,1038-1058.
[18] M. Feischl, G. Gantner, A. Haberl and D. Praetorius, Adaptive 2D IGA boundary element methods, Eng. Anal. Bound. Elem. 62 (2016), 141-153. · Zbl 1403.65267
[19] M. Feischl, G. Gantner, A. Haberl and D. Praetorius, Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations, Numer. Math. 136 (2017), no. 1, 147-182. · Zbl 1362.65131
[20] M. Feischl, G. Gantner and D. Praetorius, Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations, Comput. Methods Appl. Mech. Engrg. 290 (2015), 362-386. · Zbl 1425.65200
[21] T. Führer, G. Gantner, D. Praetorius and S. Schimanko, Optimal additive Schwarz preconditioning for adaptive 2D IGA boundary element methods, Comput. Methods Appl. Mech. Engrg. 351 (2019), 571-598. · Zbl 1441.65114
[22] S. Funken, D. Praetorius and P. Wissgott, Efficient implementation of adaptive P1-FEM in Matlab, Comput. Methods Appl. Math. 11 (2011), no. 4, 460-490. · Zbl 1284.65197
[23] G. Gantner, Adaptive isogeometric BEM, Master’s thesis, Institute of Analysis and Scientific Computing, TU Wien, 2014.
[24] G. Gantner, Optimal adaptivity for splines in finite and boundary element methods, PhD thesis, TU Wien, 2017.
[25] G. Gantner, D. Haberlik and D. Praetorius, Adaptive IGAFEM with optimal convergence rates: Hierarchical B-splines, Math. Models Methods Appl. Sci. 27 (2017), no. 14, 2631-2674. · Zbl 1376.41006
[26] G. Gantner and D. Praetorius, Adaptive BEM for elliptic PDE systems, part I: Abstract framework, for weakly-singular integral equations, Appl. Anal. (2020), 10.1080/00036811.2020.1800651.
[27] G. Gantner and D. Praetorius, Adaptive IGAFEM with optimal convergence rates: T-splines, Comput. Aided Geom. Design 81 (2020), Article ID 101906. · Zbl 07242739
[28] G. Gantner and D. Praetorius, Adaptive BEM for elliptic PDE systems, part II: Isogeometric analysis with hierarchical B-splines for weakly-singular integral equations, Comput. Math. Appl. 117 (2022), 74-96. · Zbl 1490.65299
[29] G. Gantner, D. Praetorius and S. Schimanko, Adaptive isogeometric boundary element methods with local smoothness control, Math. Models Methods Appl. Sci. 30 (2020), no. 2, 261-307. · Zbl 07205673
[30] G. Gantner, D. Praetorius and S. Schimanko, IGABEM2D, Software, zenodo.6282998, 2022.
[31] L. Heltai, M. Arroyo and A. DeSimone, Nonsingular isogeometric boundary element method for Stokes flows in 3D, Comput. Methods Appl. Mech. Engrg. 268 (2014), 514-539. · Zbl 1295.76022
[32] G. C. Hsiao and W. L. Wendland, Boundary Integral Equations, Appl. Math. Sci. 164, Springer, Berlin, 2008.
[33] T. J. R. Hughes, J. A. Cottrell and Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg. 194 (2005), no. 39-41, 4135-4195. · Zbl 1151.74419
[34] S. Keuchel, N. C. Hagelstein, O. Zaleski and O. von Estorff, Evaluation of hypersingular and nearly singular integrals in the isogeometric boundary element method for acoustics, Comput. Methods Appl. Mech. Engrg. 325 (2017), 488-504. · Zbl 1439.76117
[35] B. Marussig, J. Zechner, G. Beer and T.-P. Fries, Fast isogeometric boundary element method based on independent field approximation, Comput. Methods Appl. Mech. Engrg. 284 (2015), 458-488. · Zbl 1423.74101
[36] A.-W. Maue, Zur Formulierung eines allgemeinen Beugungsproblems durch eine Integralgleichung, Z. Phys. 126 (1949), 601-618. · Zbl 0033.14101
[37] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University, Cambridge, 2000. · Zbl 0948.35001
[38] B. H. Nguyen, X. Zhuang, P. Wriggers, T. Rabczuk, M. E. Mear and H. D. Tran, Isogeometric symmetric Galerkin boundary element method for three-dimensional elasticity problems, Comput. Methods Appl. Mech. Engrg. 323 (2017), 132-150. · Zbl 1439.74451
[39] M. J. Peake, J. Trevelyan and G. Coates, Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems, Comput. Methods Appl. Mech. Engrg. 259 (2013), 93-102. · Zbl 1286.65176
[40] C. Politis, A. I. Ginnis, P. D. Kaklis, K. Belibassakis and C. Feurer, An isogeometric BEM for exterior potential-flow problems in the plane, 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, ACM, New York (2009), 349-354.
[41] C. Politis, A. I. Ginnis, P. D. Kaklis and C. Feurer, An isogeometric BEM for exterior potential-flow problems in the plane, Comput. Methods Appl. Mech. Engrg. 254 (2013), 197-221.
[42] S. A. Sauter and C. Schwab, Boundary Element Methods, Springer Ser. Comput. Math. 39, Springer, Berlin, 2011.
[43] S. Schimanko, Adaptive isogeometric boundary element method for the hyper-singular integral equation, Master’s thesis, Institute of Analysis and Scientific Computing, TU Wien, 2016.
[44] R. N. Simpson, S. P. A. Bordas, H. Lian and J. Trevelyan, An isogeometric boundary element method for elastostatic analysis: 2D implementation aspects, Comput. Structures 118 (2013), 2-12.
[45] R. N. Simpson, S. P. A. Bordas, J. Trevelyan and T. Rabczuk, A two-dimensional isogeometric boundary element method for elastostatic analysis, Comput. Methods Appl. Mech. Engrg. 209/212 (2012), 87-100. · Zbl 1243.74193
[46] O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems, Springer, New York, 2008.
[47] T. Takahashi and T. Matsumoto, An application of fast multipole method to isogeometric boundary element method for Laplace equation in two dimensions, Eng. Anal. Bound. Elem. 36 (2012), no. 12, 1766-1775. · Zbl 1351.74138
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.