×

Global stability of a Caputo fractional SIRS model with general incidence rate. (English) Zbl 1492.92114

Summary: We introduce a fractional order SIRS model with non-linear incidence rate. Existence of a unique positive solution to the model is proved. Stability analysis of the disease free equilibrium and positive fixed points are investigated. Finally, a numerical example is presented.

MSC:

92D30 Epidemiology
34A08 Fractional ordinary differential equations
34D23 Global stability of solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Agarwal, RP; Baleanu, D.; Nieto, JJ; Torres, DFM; Zhou, Y., A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comput. Appl. Math., 339, 3-29 (2018) · Zbl 1388.34005
[2] Aguila-Camacho, N.; Duarte-Mermoud, MA; Gallegos, JA, Lyapunov functions for fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 19, 9, 2951-2957 (2014) · Zbl 1510.34111
[3] Almeida, R., What is the best fractional derivative to fit data?, Appl. Anal. Discrete Math., 11, 2, 358-368 (2017) · Zbl 1499.34025
[4] Almeida, R., Analysis of a fractional SEIR model with treatment, Appl. Math. Lett., 84, 56-62 (2018) · Zbl 1474.34010
[5] Almeida, R.; Brito da Cruz, AMC; Martins, N.; Monteiro, MTT, An epidemiological MSEIR model described by the Caputo fractional derivative, Int. J. Dyn. Control, 7, 2, 776-784 (2019)
[6] Almeida, R.; Pooseh, S.; Torres, DFM, Computational Methods in the Fractional Calculus of Variations (2015), London: Imperial College Press, London · Zbl 1322.49001
[7] Almeida, R.; Tavares, D.; Torres, DFM, The Variable-Order Fractional Calculus of Variations (2019), Cham: SpringerBriefs in Applied Sciences and Technology, Springer, Cham · Zbl 1402.49002
[8] Bayour, B., Torres, D.F.M.: Complex-valued fractional derivatives on time scales. In: Differential and Difference Equations with Applications, Springer Proceedings in Mathematics and Statistics, vol. 164, pp 79-87. Springer, Cham (2016) · Zbl 1355.26039
[9] Beddington, JR, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44, 331-340 (1975)
[10] Carvalho, ARM; Pinto, CMA, Non-integer order analysis of the impact of diabetes and resistant strains in a model for TB infection, Commun. Nonlinear Sci. Numer. Simul., 61, 104-126 (2018) · Zbl 1470.92285
[11] Carvalho, A.R.M., Pinto, C.M.A.: Immune response in HIV epidemics for distinct transmission rates and for saturated CTL response, Math. Model. Nat. Phenom. 14(3), 13, Art. 307 (2019) · Zbl 1421.35375
[12] Carvalho, ARM; Pinto, CMA; Baleanu, D., HIV/HCV coinfection model: a fractional-order perspective for the effect of the HIV viral load, Adv. Differ. Equ., 2018, 2, 22 (2018) · Zbl 1445.92266
[13] Crowley, PH; Martin, EK, Functional responses and interference within and between year classes of a dragonfly population, J. North Am. Benthol. Soc., 8, 211-221 (1989)
[14] DeAngelis, DL; Goldsten, RA; O’Neill, RV, A model for trophic interaction, Ecology, 56, 881-892 (1975)
[15] Debbouche, A.; Nieto, JJ; Torres, DFM, Optimal solutions to relaxation in multiple control problems of Sobolev type with nonlocal nonlinear fractional differential equations, J. Optim. Theory Appl., 174, 1, 7-31 (2017) · Zbl 1377.49012
[16] Diethelm, K.; Ford, NJ; Freed, AD, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36, 1, 31-52 (2004) · Zbl 1055.65098
[17] Doungmo Goufo, EF; Maritz, R.; Munganga, J., Some properties of the Kermack-McKendrick epidemic model with fractional derivative and nonlinear incidence, Adv. Differ. Equ., 2014, 278, 9 (2014) · Zbl 1344.92160
[18] El-Saka, HAA, The fractional-order SIR and SIRS epidemic models with variable population size, Math. Sci. Lett., 2, 195-200 (2013)
[19] El-Shahed, M., Alsaedi, A.: The fractional SIRC model and influenza A. Math. Probl. Eng. 2011, 9, Art. ID 480378 (2011) · Zbl 1235.92033
[20] Hattaf, K.; Yousfi, N.; Tridane, A., Stability analysis of a virus dynamics model with general incidence rate and two delays, Appl. Math. Comput., 221, 514-521 (2013) · Zbl 1329.92129
[21] He, J-H, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput., 114, 115-123 (2000) · Zbl 1027.34009
[22] He, J-H; Elagan, SK; Li, ZB, Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus, Phys. Lett. A, 376, 4, 257-259 (2012) · Zbl 1255.26002
[23] He, J-H; Hu, Y., On fractals Space-time and fractional calculus, Thermal Sci., 20, 3, 773-777 (2016)
[24] He, J-H; Li, ZB, Converting fractional differential equations into partial differential equations, Thermal Sci., 16, 2, 331-334 (2012)
[25] Hilfer, R., Applications of Fractional Calculus in Physics (2000), River Edge: World Scientific Publishing Co. Inc, River Edge · Zbl 0998.26002
[26] Huo, J.; Zhao, H.; Zhu, L., The effect of vaccines on backward bifurcation in a fractional order HIV model, Nonlinear Anal. Real World Appl., 26, 289-305 (2015) · Zbl 1371.92080
[27] Kermack, WO; McKendrick, AG, A contribution to the mathematical theory of epidemics, part I, Proc. R. Soc. A, 115, 700-721 (1927) · JFM 53.0517.01
[28] Khosravian-Arab, H.; Torres, DFM, Uniform approximation of fractional derivatives and integrals with application to fractional differential equations, Nonlinear Stud., 20, 533-548 (2013) · Zbl 1304.65169
[29] Li, Z-B; He, J-H, Fractional complex transform for fractional differential equations, Math. Comput. Appl., 15, 5, 970-973 (2010) · Zbl 1215.35164
[30] Lin, W., Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl., 332, 1, 709-726 (2007) · Zbl 1113.37016
[31] Liu, H-Y; He, J-H; Li, Z-B, Fractional calculus for nanoscale flow and heat transfer, Int. J. Numer. Methods Heat Fluid Flow, 24, 6, 1227-1250 (2014) · Zbl 1356.80018
[32] Lotfi, EM; Mahrouf, M.; Maziane, M.; Silva, CJ; Torres, DFM; Yousfi, N., A minimal HIV-AIDS infection model with general incidence rate and application to Morocco data, Stat. Optim. Inf. Comput., 7, 3, 588-603 (2019)
[33] Malinowska, AB; Odzijewicz, T.; Torres, DFM, Advanced Methods in the Fractional Calculus of Variations (2015), Cham: SpringerBriefs in Applied Sciences and Technology, Springer, Cham · Zbl 1330.49001
[34] Mateus, JP; Rebelo, P.; Rosa, S.; Silva, CM; Torres, DFM, Optimal control of non-autonomous SEIRS models with vaccination and treatment, Discrete Contin. Dyn. Syst. Ser. S, 11, 6, 1179-1199 (2018) · Zbl 1408.49046
[35] Odibat, ZM; Momani, S., Application of variational iteration method to nonlinear differential equations of fractional order, Int. J. Nonlinear Sci. Numer. Simul., 7, 1, 27-34 (2006) · Zbl 1401.65087
[36] Odibat, ZM; Momani, S., Approximate solutions for boundary value problems of time-fractional wave equation, Appl. Math. Comput., 181, 1, 767-774 (2006) · Zbl 1148.65100
[37] Odibat, Z.; Momani, S., An algorithm for the numerical solution of differential equations of fractional order, J. Appl. Math. Inf., 26, 15-27 (2008) · Zbl 1133.65116
[38] Odibat, ZM; Shawagfeh, NT, Generalized Taylor’s formula, Appl. Math. Comput., 186, 1, 286-293 (2007) · Zbl 1122.26006
[39] Okyere, E.; Oduro, FT; Amponsah, SK; Dontwi, IK; Frempong, NK, Fractional order SIR model with constant population, Br. J. Math. Comput. Sci., 14, 2, 1-12 (2016)
[40] Özalp, N.; Demirci, E., A fractional order SEIR model with vertical transmission, Math. Comput. Model., 54, 1-2, 1-6 (2011) · Zbl 1225.34011
[41] Petráš, I., Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation (2011), Berlin: Springer, Berlin · Zbl 1228.34002
[42] Podlubny, I., Fractional Differential Equations, Mathematics in Science and Engineering, 198 (1999), San Diego: Academic Press Inc, San Diego · Zbl 0918.34010
[43] Rachah, A.; Torres, DFM, Analysis, simulation and optimal control of a SEIR model for Ebola virus with demographic effects,, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 67, 1, 179-197 (2018) · Zbl 1415.92190
[44] Razminia, K.; Razminia, A.; Torres, DFM, Pressure responses of a vertically hydraulic fractured well in a reservoir with fractal structure, Appl. Math. Comput., 257, 374-380 (2015) · Zbl 1338.76120
[45] Rosa, S.; Torres, DFM, Optimal control of a fractional order epidemic model with application to human respiratory syncytial virus infection, Chaos Solitons Fractals, 117, 142-149 (2018) · Zbl 1442.92180
[46] Rostamy, D., Mottaghi, E.: Numerical solution and stability analysis of a nonlinear vaccination model with historical effects. J. Math. Stat. Conf. Proc. p. 17. doi:10.15672/HJMS.20174720333 (2017)
[47] Salati, AB; Shamsi, M.; Torres, DFM, Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems, Commun. Nonlinear Sci. Numer. Simul., 67, 334-350 (2019) · Zbl 1508.26008
[48] Samko, SG; Kilbas, AA; Marichev, OI, Fractional Integrals and Derivatives (1993), Yverdon: Gordon and Breach Science Publishers, Yverdon · Zbl 0818.26003
[49] Sierociuk, D.; Skovranek, T.; Macias, M.; Podlubny, I.; Petras, I.; Dzielinski, A.; Ziubinski, P., Diffusion process modeling by using fractional-order models, Appl. Math. Comput., 257, 2-11 (2015)
[50] Stanislavsky, AA, Fractional oscillator, Phys. Rev. E, 70, 051103 (2004)
[51] Vargas-De-León, C., Volterra-type Lyapunov functions for fractional-order epidemic systems, Commun. Nonlinear Sci. Numer. Simul., 24, 1-3, 75-85 (2015) · Zbl 1440.92067
[52] Wang, X.; He, Y.; Wang, M., Chaos control of a fractional order modified coupled dynamos system, Nonlinear Anal., 71, 12, 6126-6134 (2009) · Zbl 1187.34080
[53] Wang, K-L; Liu, SY, He’s fractional derivative and its application for fractional Fornberg-Whitham equation, Thermal Sci., 21, 5, 2049-2055 (2017)
[54] West, BJ; Turalska, M.; Grigolini, P., Fractional calculus ties the microscopic and macroscopic scales of complex network dynamics, New J. Phys., 17, 4, 045009 (2015) · Zbl 1453.90041
[55] Wojtak, W., Silva, C.J., Torres, D.F.M.: Uniform asymptotic stability of a fractional tuberculosis model, Math. Model. Nat. Phenom. 13(1), 10, Art. 9 (2018) · Zbl 1407.92133
[56] Wu, X-E; Liang, Y-S, Relationship between fractal dimensions and fractional calculus, Nonlinear Sci. Lett. A, 8, 1, 77-89 (2017)
[57] Wu, X.; Tang, L.; Zhong, T., An iteration algorithm for fractal dimensions of a self-similar set, Nonlinear Sci. Lett. A, 8, 1, 117-120 (2017)
[58] Yang, X-J; Machado, JAT; Baleanu, D., Exact traveling-wave solution for local fractional Boussinesq equation in fractal domain, Fractals, 25, 4, 1740006 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.