Karmazyn, Joseph; Kuznetsov, Alexander; Shinder, Evgeny Derived categories of singular surfaces. (English) Zbl 1493.14023 J. Eur. Math. Soc. (JEMS) 24, No. 2, 461-526 (2022). This paper begins by introducing a fairly general approach to construct a semiorthogonal decomposition (SOD) of the bounded derived category of coherent sheaves \(D^b(X)\) of a normal projective surface \(X\) with rational singularities (over an algebraically closed field of characteristic 0). The main idea is to consider a resolution of singularities \(\pi: \widetilde{X}\rightarrow X\), and induce an SOD from an SOD of \(D^b(\widetilde{X})=\langle \widetilde{\mathcal{A}_1}, \dots, \widetilde{\mathcal{A}_n}\rangle\) compatible with the exceptional divisor components, where each connected exceptional divisor component \(D_i\) corresponds to an SOD component \(\mathcal{A}_i= \pi_*\widetilde{\mathcal{A}_i}=\widetilde{\mathcal{A}_i}/\langle \mathcal{O}_E(-1)\rangle_{E\subset D_i} \subset D^b(X)\). The authors further observe that if \(\pi\) is crepant along \(D_i\) for \(i>2\), the above SOD also induces SOD of the derived category of perfect complexes by simply intersecting with \(\mathcal{A}_i\), and these SOD components of perfect complexes are admissible when \(\pi\) is a crepant resolution.The proof of the above results is an adaptation of the method developed by the second named author. The first observation is that SOD of \(D^b(\widetilde{X})\) extends to the bounded above category \(D^-(\widetilde{X})\), and \((\pi^*, \pi_*)\) is an adjoint pair on the bounded above category (but not on the bounded category or perfect complexes). This decomposes \(D^-(\widetilde{X})=\langle \ker \pi_*, \pi_*D^-(\widetilde{X}) \rangle\). The authors provide a technical argument that one can produce the same SOD components of \(D^b(X)\) in two ways: (1) by taking \(\pi_*\) of the SOD components of \(D^-(\widetilde{X})\) then restricted to \(D^b(X)\) (2) by first killing \(\ker \pi_*\cap \widetilde{\mathcal{A}_k}\) inside each SOD component \(\widetilde{\mathcal{A}_k}\) of \(D^b(\widetilde{X})\) (which is shown to be the smallest triangulated category closed under the direct sums of \(\mathcal{O}_{E_{i,k}}(-1)\), \(E_{i,k}\subset D_k\)) then apply \(\pi_*\). In the crepant case, the bounded SOD components are also preserved by \(\pi^*\), leading to nicer results on perfect complexes.The authors proceed by showing that when \(X\) has cyclic quotient singularities, \(\mathcal{A}_i\) can be constructed more explicitly under another assumption that \(\widetilde{\mathcal{A}_k}\) (twisted) adheres to the chain of curves \(\cup_i E_{i,k}\), which means a full exceptional collection of line bundles \(\widetilde{\mathcal{A}_k}=\langle \mathcal{L}_0, \mathcal{L}_0(E_{1,k}), \dots, \mathcal{L}_0(\sum_i E_{i,k}) \rangle\). Morally, this makes \(\widetilde{\mathcal{A}_k}\) the smallest admissible subcategory containing \(\mathcal{O}_{E_{i,k}}(-1)\). The twist i.e.self-intersections of \(E_{i,k}\) that comes with the assumption identifies an element in the Brauer group \(Br(X)\). The SOD of the twisted derived category by the element is described using reformulation of a result of Hille and Ploog, where the SOD components are identified as derived categories of a finite dimensional \(k\)-algebras.These results are further illustrated in the case of toric surfaces, and related to iterative extension of rank 1 reflexive sheaves considered by Y. Kawamata [Compos. Math. 154, No. 9, 1815–1842 (2018; Zbl 1423.14017)]. Reviewer: Jesse Huang (Edmonton) Cited in 8 Documents MSC: 14F08 Derived categories of sheaves, dg categories, and related constructions in algebraic geometry 14M25 Toric varieties, Newton polyhedra, Okounkov bodies 14J17 Singularities of surfaces or higher-dimensional varieties 14F22 Brauer groups of schemes Keywords:derived categories; semiorthogonal decompositions; toric surfaces; Brauer group Citations:Zbl 1423.14017 PDFBibTeX XMLCite \textit{J. Karmazyn} et al., J. Eur. Math. Soc. (JEMS) 24, No. 2, 461--526 (2022; Zbl 1493.14023) Full Text: DOI arXiv References: [1] Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462 1.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462 1.2. Descent and adherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463 1.3. Brauer obstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 1.4. Twisted adherence and twisted derived categories . . . . . . . . . . . . . . . . . . . . . . . 466 1.5. Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467 2. Inducing a semiorthogonal decomposition from a resolution . . . . . . . . . . . . . . . . . . . . 468 2.1. Resolutions of rational surface singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . 468 2.2. Compatibility with contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471 2.3. Decomposition of the bounded above category . . . . . . . . . . . . . . . . . . . . . . . . . 474 2.4. Decomposition of the bounded category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478 [2] Components of the induced semiorthogonal decomposition . . . . . . . . . . . . . . . . . . . . 480 3.1. Cyclic quotient singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480 3.2. Adherent components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 3.3. Hille-Ploog algebras as resolutions of singularities . . . . . . . . . . . . . . . . . . . . . . 486 3.4. Kalck-Karmazyn algebras and the components A i . . . . . . . . . . . . . . . . . . . . . . 489 [3] Brauer group of singular rational surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492 4.1. Grothendieck groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493 4.2. Torsion in rational surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495 4.3. Explicit identification of the Brauer group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 4.4. Resolutions of twisted derived categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499 4.5. Grothendieck groups of twisted derived categories . . . . . . . . . . . . . . . . . . . . . . 501 4.6. Semiorthogonal decompositions of twisted derived categories . . . . . . . . . . . . . . . 504 [4] Reflexive sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514 6.1. Criteria of reflexivity and purity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514 6.2. Extension of reflexive rank 1 sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516 6.3. Toric case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519 [5] A. Semiorthogonal decomposition of perfect complexes . . . . . . . . . . . . . . . . . . . . . . . . . 522 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525 References [1] Bodzenta, A., Bondal, A.: Categorifying non-commutative deformations. arXiv:2004.03084 (2020) [6] Bourbaki, N.: Éléments de mathématique. Algèbre commutative. Chapitre 10. Springer, Berlin (2007) Zbl 1107.13002 MR 2333539 · Zbl 1107.13002 [7] Bridgeland, T.: Flops and derived categories. Invent. Math. 147, 613-632 (2002) Zbl 1085.14017 MR 1893007 · Zbl 1085.14017 [8] Brieskorn, E.: Rationale Singularitäten komplexer Flächen. Invent. Math. 4, 336-358 (1967/68) Zbl 0219.14003 MR 222084 · Zbl 0219.14003 [9] Bright, M.: Brauer groups of singular del Pezzo surfaces. Michigan Math. J. 62, 657-664 (2013) Zbl 1279.14024 MR 3102534 · Zbl 1279.14024 [10] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Stud. Adv. Math. 39, Cambridge Univ. Press, Cambridge (1993) Zbl 0909.13005 MR 1251956 · Zbl 0788.13005 [11] Danilov, V. I.: The geometry of toric varieties. Uspekhi Mat. Nauk 33, no. 2, 85-134, 247 (1978) (in Russian) Zbl 0425.14013 MR 495499 [12] de Jong, A. J.: A result of Gabber. www.math.columbia.edu/ dejong/papers/2-gabber.pdf [13] DeMeyer, F. R., Ford, T. J.: On the Brauer group of toric varieties. Trans. Amer. Math. Soc. 335, 559-577 (1993) Zbl 0789.13001 MR 1085941 · Zbl 0789.13001 [14] DeMeyer, F. R., Ford, T. J., Miranda, R.: The cohomological Brauer group of a toric variety. J. Algebraic Geom. 2, 137-154 (1993) Zbl 797.14017 MR 1185609 · Zbl 0797.14017 [15] Esnault, H.: Reflexive modules on quotient surface singularities. J. Reine Angew. Math. 362, 63-71 (1985) Zbl 0553.14016 MR 809966 · Zbl 0553.14016 [16] Fulton, W.: Introduction to Toric Varieties. Ann. of Math. Stud. 131, Princeton Univ. Press, Princeton, NJ (1993) Zbl 0813.14039 MR 1234037 · Zbl 0813.14039 [17] Fulton, W.: Intersection Theory. 2nd ed., Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin (1998) Zbl 0541.14005 MR 1644323 · Zbl 0885.14002 [18] Hille, L.: Exceptional sequences of line bundles on toric varieties. In: Mathematisches Insti-tut, Georg-August-Universität Göttingen: Seminars 2003/2004, Universitätsdrucke Göttingen, Göttingen, 175-190 (2004) Zbl 1098.14524 MR 2181579 · Zbl 1098.14524 [19] Hille, L., Perling, M.: Exceptional sequences of invertible sheaves on rational surfaces. Com-pos. Math. 147, 1230-1280 (2011) Zbl 1237.14043 MR 2822868 · Zbl 1237.14043 [20] Hille, L., Ploog, D.: Tilting chains of negative curves on rational surfaces. Nagoya Math. J. 235, 26-41 (2019) Zbl 1440.14085 MR 3986709 · Zbl 1440.14085 [21] Hoobler, R. T.: When is Br.X/ D Br 0 .X/? In: Brauer Groups in Ring Theory and Algebraic Geometry (Wilrijk, 1981), Lecture Notes in Math. 917, Springer, Berlin, 231-244 (1982) Zbl 0491.14013 MR 657433 · Zbl 0491.14013 [22] Kalck, M. Karmazyn, J.: Noncommutative Knörrer type equivalences via noncommutative resolutions of singularities. arXiv:1707.02836 (2017) [23] Kawamata, Y.: On multi-pointed non-commutative deformations and Calabi-Yau threefolds. Compos. Math. 154, 1815-1842 (2018) Zbl 1423.14017 MR 3867285 · Zbl 1423.14017 [24] Kawamata, Y., Matsuda, K., Matsuki, K.: Introduction to the minimal model problem. In: Algebraic Geometry (Sendai, 1985), Adv. Stud. Pure Math. 10, North-Holland, Amsterdam, 283-360 (1987) Zbl 0672.14006 MR 946243 · Zbl 0672.14006 [25] Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties. Cambridge Tracts in Math. 134, Cambridge Univ. Press, Cambridge (1998) Zbl 0926.14003 MR 1658959 · Zbl 0926.14003 [26] Krishna, A., Srinivas, V.: Zero-cycles and K-theory on normal surfaces. Ann. of Math. (2) 156, 155-195 (2002) Zbl 1060.14015 MR 1935844 · Zbl 1060.14015 [27] Kuznetsov, A. G.: Hyperplane sections and derived categories. Izv. Ross. Akad. Nauk Ser. Mat. 70, no. 3, 23-128 (2006) (in Russian) Zbl 133.14016 MR 2238172 · Zbl 1133.14016 [28] Kuznetsov, A.: Derived categories of quadric fibrations and intersections of quadrics. Adv. Math. 218, 1340-1369 (2008) Zbl 1168.14012 MR 2419925 · Zbl 1168.14012 [29] Kuznetsov, A.: Lefschetz decompositions and categorical resolutions of singularities. Selecta Math. (N.S.) 13, 661-696 (2008) Zbl 1156.18006 MR 2403307 · Zbl 1156.18006 [30] Kuznetsov, A.: Base change for semiorthogonal decompositions. Compos. Math. 147, 852-876 (2011) Zbl 1218.18009 MR 2801403 · Zbl 1218.18009 [31] Kuznetsov, A.: Derived categories of families of sextic del Pezzo surfaces. Int. Math. Res. Notices (online, 2019); arXiv:1708.00522 [32] Kuznetsov, A., Lunts, V. A.: Categorical resolutions of irrational singularities. Int. Math. Res. Notices 2015, 4536-4625 Zbl 1338.14020 MR 3439086 · Zbl 1338.14020 [33] Lunts, V. A.: Categorical resolution of singularities. J. Algebra 323, 2977-3003 (2010) Zbl 1202.18006 MR 2609187 · Zbl 1202.18006 [34] Milne, J. S.: Étale Cohomology. Princeton Math. Ser. 33, Princeton Univ. Press, Princeton, NJ (1980) Zbl 0433.14012 MR 559531 · Zbl 0433.14012 [35] Neeman, A.: The category OET c op as functors on T b c . arXiv:1806.05777 (2018) [36] Orlov, D. O.: Triangulated categories of singularities, and equivalences between Landau-Ginzburg models. Mat. Sb. 197, 117-132 (2006) (in Russian) Zbl 1161.14301 MR 2437083 · Zbl 1161.14301 [37] Pavic, N., Shinder, E.: K-theory and the singularity category of quotient singularities. arXiv:1809.10919 (2018) [38] Riemenschneider, O.: Deformationen von Quotientensingularitäten (nach zyklischen Grup-pen). Math. Ann. 209, 211-248 (1974) Zbl 0275.32010 MR 367276 · Zbl 0275.32010 [39] Srinivas, V.: Grothendieck groups of polynomial and Laurent polynomial rings. Duke Math. J. 53, 595-633 (1986) Zbl 0615.14009 MR 860663 · Zbl 0615.14009 [40] Verdier, J.-L.: Catégories dérivées: quelques résultats (état 0). In: Cohomologie étale, Lecture Notes in Math. 569, Springer, Berlin, 262-311 (1977) Zbl 0407.18008 MR 3727440 · Zbl 0407.18008 [41] Wunram, J.: Reflexive modules on quotient surface singularities. Math. Ann. 279, 583-598 (1988) Zbl 0616.14001 MR 926422 · Zbl 0616.14001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.