Marian, Alina; Oprea, Dragos; Pandharipande, Rahul Higher rank Segre integrals over the Hilbert scheme of points. (English) Zbl 1495.14006 J. Eur. Math. Soc. (JEMS) 24, No. 8, 2979-3015 (2022). The determination of Segre classes of tautological vector bundles on the Hilbert scheme of points on surfaces is a central problem in enumerative geometry. More precisely, given a nonsingular projective surface \(S\) a vector bundle \(V\) on \(S\) induces naturally a tautological vector bundle \(V^{[n]}\) on the Hilbert scheme of points \(S^{[n]}\). The associated Segre series \begin{align*} S_{\alpha}(z)=\sum_{n=0}^{\infty}z^n\int_{S^{[n]}} s(V^{[n]}) \end{align*} was studied in [Invent. Math. 136, No. 1, 157–207 (1999; Zbl 0919.14001)] by M. Lehn and has been the object of intense research in the last decades. More in general similar series can be studied for a \(K\)-theory class \(\alpha\in K(S)\) and the induced class \(\alpha^{[n]}\in K(S^{[n]})\).In particular G. Ellingsrud et al. [J. Algebr. Geom. 10, No. 1, 81–100 (2001; Zbl 0976.14002)] show a factorization \begin{align*} S_{\alpha}(z)=A_0(z)^{c_2(\alpha)} \cdot A_1(z)^{c_1(\alpha)^2} \cdot A_2(z)^{\chi(\mathcal O_S)} \cdot A_3(z)^{c_1(\alpha)\cdot K_S}\cdot A_4(z)^{K_S^2} \end{align*} in universal series \(A_0(z),\dots,A_4(z)\in \mathbb Q[[z]]\) depending on \(\alpha\) just through the rank.The main results of the paper under review prove formulas for: ● \(A_0, A_1, A_2\) for \(S\) a \(K\)-trivial surface (and hence the factors involving \(A_3\) and \(A_4\) are trivial); ● \(A_3, A_4\) for any surface \(S\) when the rank of \(\alpha\) is 2.The formulas for the \(K\)-trivial surfaces are obtained by finding an optimal geometric setup where to compute them. Whereas the formulas for \(A_3\) and \(A_4\) are determined by studying the blow-up of a \(K3\) surface at a point. Key ingredients in the proofs are Reider techniques and intersection excess formula. Reviewer: Luca Giovenzana (Chemnitz) Cited in 2 ReviewsCited in 10 Documents MSC: 14C05 Parametrization (Chow and Hilbert schemes) 14C17 Intersection theory, characteristic classes, intersection multiplicities in algebraic geometry 14J10 Families, moduli, classification: algebraic theory 14J28 \(K3\) surfaces and Enriques surfaces Keywords:Hilbert scheme of points; tautological integrals; Segre and Verlinde numbers Citations:Zbl 0919.14001; Zbl 0976.14002 PDFBibTeX XMLCite \textit{A. Marian} et al., J. Eur. Math. Soc. (JEMS) 24, No. 8, 2979--3015 (2022; Zbl 1495.14006) Full Text: DOI arXiv Online Encyclopedia of Integer Sequences: Expansion of the unique real solution y(t) to the equation y*(1+y)^2/((1-y)*(1-y^3)) = t/(1+3t) with initial value y(0)=0. References: [1] Arbesfeld, N.: K-Theoretic Enumerative Geometry and the Hilbert Scheme of Points on a Surface. ProQuest LLC, Ann Arbor (2018) MR 3818876 [2] Ellingsrud, G., Göttsche, L., Lehn, M.: On the cobordism class of the Hilbert scheme of a surface. J. Algebraic Geom. 10, 81-100 (2001) Zbl 0976.14002 MR 1795551 · Zbl 0976.14002 [3] Fulton, W.: Intersection Theory. Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin (1984) Zbl 0541.14005 MR 732620 · Zbl 0541.14005 [4] Göttsche, L.: A conjectural generating function for numbers of curves on surfaces. Comm. Math. Phys. 196, 523-533 (1998) Zbl 0934.14038 MR 1645204 · Zbl 0934.14038 [5] Göttsche, L.: Theta functions and Hodge numbers of moduli spaces of sheaves on rational surfaces. Comm. Math. Phys. 206, 105-136 (1999) Zbl 0961.14022 MR 1736989 · Zbl 0961.14022 [6] Göttsche, L.: Verlinde-type formulas for rational surfaces. J. Eur. Math. Soc. (JEMS) 22, 151-212 (2020) Zbl 1442.14135 MR 4046012 · Zbl 1442.14135 [7] Göttsche, L., Nakajima, H., Yoshioka, K.: K-theoretic Donaldson invariants via instanton counting. Pure Appl. Math. Q. 5, 1029-1111 (2009) Zbl 1192.14011 MR 2532713 · Zbl 1192.14011 [8] Göttsche, L., Yuan, Y.: Generating functions for K-theoretic Donaldson invariants and Le Potier’s strange duality. J. Algebraic Geom. 28, 43-98 (2019) Zbl 06975527 MR 3875361 · Zbl 1470.14114 [9] Johnson, D.: Universal series for Hilbert schemes and strange duality. Int. Math. Res. Not. IMRN 2020, 3130-3152 (2020) Zbl 1440.14019 MR 4098636 · Zbl 1440.14019 [10] Kool, M., Shende, V., Thomas, R. P.: A short proof of the Göttsche conjecture. Geom. Topol. 15, 397-406 (2011) Zbl 1210.14011 MR 2776848 · Zbl 1210.14011 [11] Lehn, M.: Chern classes of tautological sheaves on Hilbert schemes of points on surfaces. Invent. Math. 136, 157-207 (1999) Zbl 0919.14001 MR 1681097 · Zbl 0919.14001 [12] Marian, A., Oprea, D., Pandharipande, R.: Segre classes and Hilbert schemes of points. Ann. Sci. Éc. Norm. Supér. (4) 50, 239-267 (2017) Zbl 1453.14016 MR 3621431 · Zbl 1453.14016 [13] Marian, A., Oprea, D., Pandharipande, R.: The combinatorics of Lehn’s conjecture. J. Math. Soc. Japan 71, 299-308 (2019) Zbl 1422.14008 MR 3909922 · Zbl 1422.14008 [14] Mellit, A.: Private communication [15] Mukai, S.: On the moduli space of bundles on K3 surfaces. I. In: Vector Bundles on Algebraic Varieties (Bombay, 1984), Tata Inst. Fund. Res. Stud. Math. 11, Tata Inst. Fund. Res., Bombay, 341-413 (1987) Zbl 0674.14023 MR 893604 · Zbl 0674.14023 [16] Oprea, D., Pandharipande, R.: Quot schemes of curves and surfaces: Virtual classes, integrals, Euler characteristics. arXiv:1903.08787v2 (2021) · Zbl 1505.14010 [17] Pandharipande, R., Yin, Q.: Relations in the tautological ring of the moduli space of K3 surfaces. J. Eur. Math. Soc. (JEMS) 22, 213-252 (2020) Zbl 1436.14069 MR 4046013 · Zbl 1436.14069 [18] Reider, I.: Vector bundles of rank 2 and linear systems on algebraic surfaces. Ann. of Math. (2) 127, 309-316 (1988) Zbl 0663.14010 MR 932299 · Zbl 0663.14010 [19] Scala, L.: Cohomology of the Hilbert scheme of points on a surface with values in representations of tautological bundles. Duke Math. J. 150, 211-267 (2009) Zbl 1211.14012 MR 2569613 · Zbl 1211.14012 [20] Tikhomirov, A. S.: Standard bundles on a Hilbert scheme of points on a surface. In: Alge-braic Geometry and Its Applications (Yaroslavl’, 1992), Aspects Math. E25, Friedr. Vieweg, Braunschweig, 183-203 (1994) Zbl 0819.14003 MR 1282029 · Zbl 0819.14003 [21] Tyurin, A. N.: Spin-polynomial invariants of smooth structures on algebraic surfaces. Izv. Ross. Akad. Nauk Ser. Mat. 57, 125-164 (1993) Zbl 0823.14031 MR 1230970 · Zbl 0823.14031 [22] Tzeng, Y.-J.: A proof of the Göttsche-Yau-Zaslow formula. J. Differential Geom. 90, 439-472 (2012) Zbl 1253.14054 MR 2916043 · Zbl 1253.14054 [23] Voisin, C.: Segre classes of tautological bundles on Hilbert schemes of surfaces. Algebr. Geom. 6, 186-195 (2019) Zbl 1428.14010 MR 3914750 · Zbl 1428.14010 [24] Whittaker, E. T., Watson, G. N.: A Course of Modern Analysis. Cambridge Math. Libr., Cambridge University Press, Cambridge (1927) JFM 53.0180.04 MR 1424469 · JFM 53.0180.04 [25] Yoshioka, K.: Chamber structure of polarizations and the moduli of stable sheaves on a ruled surface. Internat. J. Math. 7, 411-431 (1996) Zbl 0883.14016 MR 1395938 · Zbl 0883.14016 [26] Yoshioka, K.: Some examples of Mukai’s reflections on K3 surfaces. J. Reine Angew. Math. 515, 97-123 (1999) Zbl 0940.14026 MR 1717621 · Zbl 0940.14026 [27] Yoshioka, K.: Irreducibility of moduli spaces of vector bundles on K3 surfaces. arXiv: math/9907001 (2000) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.