×

On Bayesian data assimilation for PDEs with ill-posed forward problems. (English) Zbl 1495.35206

Summary: We study Bayesian data assimilation (filtering) for time-evolution Partial differential equations (PDEs), for which the underlying forward problem may be very unstable or ill-posed. Such PDEs, which include the Navier-Stokes equations of fluid dynamics, are characterized by a high sensitivity of solutions to perturbations of the initial data, a lack of rigorous global well-posedness results as well as possible non-convergence of numerical approximations. Under very mild and readily verifiable general hypotheses on the forward solution operator of such PDEs, we prove that the posterior measure expressing the solution of the Bayesian filtering problem is stable with respect to perturbations of the noisy measurements, and we provide quantitative estimates on the convergence of approximate Bayesian filtering distributions computed from numerical approximations. For the Navier-Stokes equations, our results imply uniform stability of the filtering problem even at arbitrarily small viscosity, when the underlying forward problem may become ill-posed, as well as the compactness of numerical approximants in a suitable metric on time-parametrized probability measures.

MSC:

35R25 Ill-posed problems for PDEs
35R30 Inverse problems for PDEs
35G31 Initial-boundary value problems for nonlinear higher-order PDEs
35Q30 Navier-Stokes equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Apte, A.; Jones, C. K R. T.; Stuart, A. M.; Voss, J., Data assimilation: mathematical and statistical perspectives, Int. J. Numer. Methods Fluids, 56, 1033-1046 (2008) · Zbl 1384.62300 · doi:10.1002/fld.1698
[2] Bansal, P., Numerical approximation of statistical solutions of the incompressible Navier-Stokes equations (2021)
[3] Bardos, C.; Tadmor, E., Stability and spectral convergence of Fourier method for nonlinear problems: on the shortcomings of the de-aliasing method, Numer. Math., 129, 749-782 (2015) · Zbl 1310.76123 · doi:10.1007/s00211-014-0652-y
[4] Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math. Comput., 22, 745-762 (1968) · Zbl 0198.50103 · doi:10.1090/s0025-5718-1968-0242392-2
[5] Courtier, P.; Andersson, E.; Heckley, W.; Pailleux, J.; Vasiljevic, D.; Hamrud, M.; Hollingsworth, A.; Rabier, F.; Fisher, M., The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: formulation, Q. J. R. Meteorol. Soc., 124, 1783-1807 (1998) · doi:10.1256/smsqj.55001
[6] Gottlieb, Y. M H. D.; Orszag, S., Theory and application of spectral methods, Spectral Methods for PDEs, 1-54 (1984), Philadelphia, PA: SIAM, Philadelphia, PA · Zbl 0599.65079
[7] Dafermos, C. M., Hyperbolic Conservation Laws in Continuum Physics, vol 3 (2005), Berlin: Springer, Berlin · Zbl 1078.35001
[8] Evensen, G., Data Assimilation: The Ensemble Kalman Filter (2009), Berlin: Springer, Berlin · Zbl 1395.93534
[9] Fjordholm, U. S.; Käppeli, R.; Mishra, S.; Tadmor, E., Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws, Found. Comput. Math., 17, 763-827 (2017) · Zbl 1371.65080 · doi:10.1007/s10208-015-9299-z
[10] Fjordholm, U. S.; Lye, K.; Mishra, S.; Weber, F., Statistical solutions of hyperbolic systems of conservation laws: numerical approximation, Math. Models Methods Appl. Sci., 30, 539-609 (2020) · Zbl 1436.65121 · doi:10.1142/s0218202520500141
[11] Fjordholm, U. S.; Mishra, S.; Tadmor, E., Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws, SIAM J. Numer. Anal., 50, 544-573 (2012) · Zbl 1252.65150 · doi:10.1137/110836961
[12] Frisch, U., Turbulence: The Legacy of A. N. Kolmogorov (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 0832.76001
[13] Ghoshal, S., An analysis of numerical errors in large eddy simulations of turbulence, J. Comput. Phys., 125, 187-206 (1996) · Zbl 0848.76043 · doi:10.1006/jcph.1996.0088
[14] Glimm, J.; Grove, J. W.; Li, X. L.; Oh, W.; Sharp, D. H., A critical analysis of Rayleigh-Taylor growth rates, J. Comput. Phys., 169, 652-677 (2001) · Zbl 1011.76057 · doi:10.1006/jcph.2000.6590
[15] Godlewski, E.; Raviart, P-A, Numerical Approximation of Hyperbolic Systems of Conservation Laws, vol 118 (2013), New York: Springer, New York · Zbl 1063.65080
[16] Guermond, J-L; Prudhomme, S., Mathematical analysis of a spectral hyperviscosity LES model for the simulation of turbulent flows, ESAIM: Math. Modelling Numer. Anal., 37, 893-908 (2003) · Zbl 1070.76035 · doi:10.1051/m2an:2003060
[17] Herrmann, L.; Schwab, C.; Zech, J., Deep neural network expression of posterior expectations in Bayesian PDE inversion, Inverse Problems, 36 (2020) · Zbl 1453.35191 · doi:10.1088/1361-6420/abaf64
[18] Kaipio, J.; Somersalo, E., Statistical and Computational Inverse Problems, vol 160 (2006), New York: Springer, New York · Zbl 0927.35134
[19] Karamanos, G-S; Karniadakis, G. E., A spectral vanishing viscosity method for large-eddy simulations, J. Comput. Phys., 163, 22-50 (2000) · Zbl 0984.76036 · doi:10.1006/jcph.2000.6552
[20] Kovachki, N.; Lanthaler, S.; Mishra, S., On universal approximation and error bounds for Fourier neural operators, J. Mach. Learn. Res., 22, 1-76 (2021) · Zbl 07626805
[21] Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow (1969), London: Gordon and Breach, London · Zbl 0184.52603
[22] Lanthaler, S.; Mishra, S., On the convergence of the spectral viscosity method for the two-dimensional incompressible Euler equations with rough initial data, Found. Comput. Math., 20, 1309-1362 (2019) · Zbl 1454.65125 · doi:10.1007/s10208-019-09440-0
[23] Lanthaler, S.; Mishra, S.; Parés-Pulido, C., On the conservation of energy in two-dimensional incompressible flows, Nonlinearity, 34, 1084-1135 (2021) · Zbl 1464.35232 · doi:10.1088/1361-6544/abb452
[24] Lanthaler, S.; Mishra, S.; Parés-Pulido, C., Statistical solutions of the incompressible Euler equations, Math. Models Methods Appl. Sci., 31, 223-292 (2021) · Zbl 1473.35422 · doi:10.1142/s0218202521500068
[25] Latz, J., On the well-posedness of Bayesian inverse problems, SIAM/ASA J. Uncertain. Quantification, 8, 451-482 (2020) · Zbl 1437.49050 · doi:10.1137/19m1247176
[26] Law, K.; Stuart, A.; Zygalakis, K., Data Assimilation, p 214 (2015), Cham: Springer, Cham · Zbl 1353.60002
[27] Law, K. J H.; Stuart, A. M., Evaluating data assimilation algorithms, Mon. Weather Rev., 140, 3757-3782 (2012) · doi:10.1175/mwr-d-11-00257.1
[28] Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 63, 193-248 (1934) · JFM 60.0726.05 · doi:10.1007/bf02547354
[29] LeVeque, R. J., Numerical Methods for Conservation Laws, vol 3 (1992), Basel: Springer, Basel · Zbl 0847.65053
[30] Li, Z.; Kovachki, N. B.; Azizzadenesheli, K.; Liu, B.; Bhattacharya, K.; Stuart, A.; Anandkumar, A., Fourier neural operator for parametric partial differential equations (2021)
[31] Mishra, S.; Ochsner, D.; Ruf, A. M.; Weber, F., Well-posedness of Bayesian inverse problems for hyperbolic conservation laws (2021)
[32] Pope, S. B., Turbulent Flows (2001), Cambridge: Cambridge University Press, Cambridge
[33] Rabier, F.; Järvinen, H.; Klinker, E.; Mahfouf, J-F; Simmons, A., The ECMWF operational implementation of four-dimensional variational assimilation. I: experimental results with simplified physics, Q. J. R. Meteorol. Soc., 126, 1143-1170 (2000) · doi:10.1002/qj.49712656415
[34] Schneider, T.; Lan, S.; Stuart, A.; Teixeira, J., Earth system modeling 2.0: a blueprint for models that learn from observations and targeted high-resolution simulations, Geophys. Res. Lett., 44, 12396-12417 (2017) · doi:10.1002/2017gl076101
[35] Sprungk, B., On the local Lipschitz stability of Bayesian inverse problems, Inverse Problems, 36 (2020) · Zbl 1469.62216 · doi:10.1088/1361-6420/ab6f43
[36] Stuart, A. M., Inverse problems: a Bayesian perspective, Acta Numer., 19, 451-559 (2010) · Zbl 1242.65142 · doi:10.1017/s0962492910000061
[37] Tadmor, E., Convergence of spectral methods for nonlinear conservation laws, SIAM J. Numer. Anal., 26, 30 (1989) · Zbl 0667.65079 · doi:10.1137/0726003
[38] Tadmor, E., Burgers’ equation with vanishing hyper-viscosity, Commun. Math. Sci., 2, 317-324 (2004) · Zbl 1088.35038 · doi:10.4310/cms.2004.v2.n2.a9
[39] Tarantola, A., Inverse Problem Theory and Methods for Model Parameter Estimation (2005), Philadelphia, PA: SIAM, Philadelphia, PA · Zbl 1074.65013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.