Viswanath, M. K.; Kumar, M. Ranjith A public key cryptosystem using Hiil’s cipher. (English) Zbl 1495.94073 J. Discrete Math. Sci. Cryptography 18, No. 1-2, 129-138 (2015). Summary: The main goal of this paper is to develop a simple and robust public key cryptosystem. Towards this goal we introduce a public key cryptosystem using Hill’s cipher. Cited in 4 Documents MSC: 94A60 Cryptography 94A62 Authentication, digital signatures and secret sharing Keywords:Hill cipher; public key; digital signature; rectangular matrix; Moore-Penrose inverse and Diffie-Hellman key exchange protocol PDFBibTeX XMLCite \textit{M. K. Viswanath} and \textit{M. R. Kumar}, J. Discrete Math. Sci. Cryptography 18, No. 1--2, 129--138 (2015; Zbl 1495.94073) Full Text: DOI References: [1] Bellare, M.; Canetti, R.; Krawczyk, H.; Koblitz, N., Keying hash functions for message Authentication, 1109, 1-15 (1996), Springer-Verlag · Zbl 1329.94051 [2] Boullion, T. L.; Odell, P. L., Generalized Inverse Matrices, Wiley, 41-62 (1971) · Zbl 0223.15002 [3] Eisenberg, M., Hill ciphers and Modular Linear Algebra, Mimeographed Notes (1998), University of Massachusetts [4] Elementary Linear Algebra, Howard Anton and Rorres chris, 678-688 (2000), Newyork: John-Wiley & Sons Inc, Newyork [5] Ismail, I. A.; Amin, M.; Diab, H., How to repair the Hill cipher, Journal of Zhejiang University Science, 7, 12 (2006) · Zbl 1130.68048 [6] Hoffstein, Jeffrey; Pipher, Jill; Silverman, Joseph H., An introduction to mathematical cryptography (2008), Springer · Zbl 1160.94001 [7] Lester Hill, S., Cryptography in an algebraic alphabet, Amer. Math, 306-312 (1929) · JFM 55.0062.08 [8] Menezes, A. J.; Van Oorchot, P. C.; Vanstone, S. A., Handbook of Applied Cryptography (2000), CRC Press [9] Koblitz, Neal, A course in Number Theory and Cryptography (1994), Springer · Zbl 0819.11001 [10] Penrose, R., A generalized Inverse for matrices, Communicated by J.A. Todd · Zbl 0065.24603 [11] Stanimirovic, Predrag; Stankovic, Miomir, Determinants of rectangular matrices and Moore-Penrose inverse, Novi sad J.Math, 27, 1, 53-69 (1997) · Zbl 1011.15004 [12] Rhee; Young, Man, Cryptography and Secure Communications (1994), McGraw - Hill co · Zbl 0833.94009 [13] Rivest, R. L.; Shamir, A.; Adleman, L., A method for obtaining digital signatures and public key cryptosystems, Communications of the ACM, 21, 2, 120-126 (1978) · Zbl 0368.94005 [14] Toorani, M.; Falahati, A., In proc.14^thIEEE symposium on computers and communications, Sousse, A secure variant of the Hill cipher, 313-316 (2009) [15] Viswanath, M. K.; Deepti, A. R., An improvised version of Hill’s Cipher, Journal of Discrete Mathematical Sciences and Cryptography, 11, 2 (2008), India · Zbl 1213.94138 [16] Viswanath, M. K.; Deepti, A. R., A New Approach to a Secure Cryptosystem using the Microcontroller, Journal of Information Assurance Security, 1, 4 (2006), USA [17] stalling, William, Eastern Economy Edition, Cryptography and Network Security (2006) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.