Sarde, Pankaj; Banerjee, Amitabh Strong designated verifier signature scheme based on discrete logarithm problem. (English) Zbl 1495.94090 J. Discrete Math. Sci. Cryptography 18, No. 6, 877-885 (2015). MSC: 94A62 Authentication, digital signatures and secret sharing 94A60 Cryptography Keywords:designated verifier; discrete logarithm problem; digital signature; public key crypto-system × Cite Format Result Cite Review PDF Full Text: DOI References: [1] ElGamal, T., A public key cryptosystem and a signature scheme based on discrete logarithms. PP, IEEE Transaction on Information Theory, Vol, IT-31, 469-472 (1985) · Zbl 0571.94014 · doi:10.1109/TIT.1985.1057074 [2] Rivest, R.; Shamir, A.; Adleman, L., A method for obtaining digital signatures and public-key cryptosystems, communication of the ACM, Vol. 21, 120-126 (1978) · Zbl 0368.94005 · doi:10.1145/359340.359342 [3] Diffie, W.; Hellman, M., New direction in cryptography, IEEE transaction on Information Theory, Vol. IT-22, 644-654 (1976) · Zbl 0435.94018 · doi:10.1109/TIT.1976.1055638 [4] Girault, M., “self-certified public keys,” in advances in cryptology-EUROCRYPT,, 491-497 (1991) · Zbl 0825.68374 [5] Shamir, A., “Identity-based cryptosystems and signature schemes,” in advances in cryptology-CRYPTO, 47-53 (1984) [6] Stallings, W., cryptography and network security: principles and practices (2005), Pearson: Pearson, Newyork [7] Meng, B.; Wang, S.; Xiong, Q., “A fair non-repudiation protocol,” in proceedings of the 7th international conference on computer supported Co-operative work in design, 68-73 (2002) [8] Chaum, D.; Van Antwerpen, H., “Undeniable signatures,” in advances in cryptology(Crypto89, LNCS 435, 212-216 (1990), Springer-Verlag · Zbl 0724.68028 [9] Jakobsson, M.; Sako, K.; Impagliazzo, R., Designated verifier proofs and their applications, Advances in cryptology(EUROCRYPT’96), 143-154 (1996), LNCS 1070 · Zbl 1304.94065 [10] Saeednia, S.; Kremer, S.; Markowitch, O., An efficient strong designated verifier signature scheme, Information Security and Cryptology-ICISC’03, 40-54 (2003) · Zbl 1092.94514 [11] Lee, J.; H, J., Computer standards and Interfaces, Vol. 31, 258-260 (2009), Chang: Comment on Saeednia et al’s strong designated verifier signature scheme, Chang: Elsevier, Chang: Comment on Saeednia et al’s strong designated verifier signature scheme, Chang [12] Yang, F.; Liao, C., A Provably secure and efficient strong designated verifier signature scheme, International Journal of Network Security, Vol.11, 60-64 (2010) [13] Susilo, W.; Zhang, F.; Mu, Y., Identity based strong designated verifier signature schemes, Information and Security and Privacy, Vol. 3108, 167-170 (2004) · Zbl 1098.94630 [14] Lin, Han-Yu; Wu, Tzong-Sun; Yeh, Yi-Shiung; Dl, A., based short strong designated verifier signature scheme with low computation, Journal of Information Science and Engineering, 27, 451-463 (2011) [15] G. Wang, An attack on non-interactive designated verifier proofs for undeniable signatures, Cryptology eprint Archieve, http://eprint.iacr.org/2003/243,2003. [16] Lee, Ji-Seon; Chang, Jik Hyun, Strong Designated verifier proof signature without hash functions and some scheme for an ad-hoc group ring, International Journal of Computer Science and Network security, Vol 6, No.12, December (2006) [17] Delfs, H.; Knebl, H., Introduction to cryptography: Principles and Applications (2002), Springer: Springer, Berlin · Zbl 0995.94001 [18] Huang, X.; Susilo, W.; Mu, Y.; Zhang, F., Short designated verifier signature scheme and its identity-based variant, International Journal of Network Security, Vol 6, 82-93 (2008) [19] Kang, B.; Boyd, C.; Dawson, E., A novel identity-based strong designated verifier signature scheme, The Journal of Systems and Software, Vol 82, 270-273 (2009) · doi:10.1016/j.jss.2008.06.014 [20] K. Kumar, G. Shailaja, A. Saxena, Identity based strong designated verifier signature scheme, Cryptology ePrint Archieve, Report 2006/134, http://eprint.iacr.org/2006/134,2006. · Zbl 1132.68375 [21] Zhang, J.; Mao, J., A novel Id-based designated verifier signature scheme, Information Sciences, Vol.178, 766-773 (2008) · Zbl 1126.68420 · doi:10.1016/j.ins.2007.07.005 [22] Shao, Z., A provably secure short signature scheme based on discrete logarithms, Information Sciences, Vol.177, 5432-5440 (2007) · Zbl 1134.94010 · doi:10.1016/j.ins.2007.05.039 [23] Yang, F. Y.; Liao, C. M., A Provably secure and efficient strong designated verifier signature scheme, International Journal of Network Security, Vol.10, 223-227 (2010) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.