×

Quantification of wave attenuation in mangroves in Manila Bay using nonlinear shallow water equations. (English) Zbl 1496.76032

Summary: In this paper, we investigate the wave attenuation by mangroves using modified 2D Nonlinear Shallow Water Equations. Numerically, we solve the model using a staggered finite volume method that is free from damping error. Further, several benchmark tests are performed to show the robustness of our numerical model. Then, we implement our numerical model to investigate the effects of mangroves in the wave attenuation caused by tsunamis in Manila Bay. The bathymetry profile of Manila Bay used in this study is obtained from the General Bathymetric Chart of the Oceans (GEBCO). Numerical results show that the presence of mangroves can reduce ocean waves near the coast. Simulations on varying density and width of mangrove forest quantify how much the tsunami wave height can be reduced. The results of this work may guide the policymakers of the Philippines in deciding the best strategy in rehabilitating Manila Bay.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76M12 Finite volume methods applied to problems in fluid mechanics
86A05 Hydrology, hydrography, oceanography
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Jacinto, G. S.; Velasquez, I. B.; San Diego-McGlone, M. L.; Villanoy, C. L.; Siringan, F. B., Biophysical environment of manila bay - then and now, (Wolanski, E., The environment in Asia Pacific harbours (2006), Springer), 293-307
[2] Cruz, L. L.B.; Shimozono, T., Transport of floating litter within Manila Bay, Philippines, Mar Pollut Bull, 163, Article 111944 pp. (2021)
[3] Maria, E. J. Sta.; Siringan, F. P.; Bulos, A.dM.; Sombrito, E. Z., Estimating sediment accumulation rates in Manila Bay, a marine pollution hot spot in the Seas of East Asia, Mar Pollut Bull, 59, 164-174 (2009)
[4] Azanza, R. V.; Siringan, F. P.; San Diego-McGlone, M.; Yñiguez, A. T.; Macalalad, N. H.; Zamora, P. B.; Agustin, M. B.; Matsuoka, K., Horizontal dinoflagellate cyst distribution, sediment characteristics and benthic flux in Manila Bay, Philippines, Phycol Res, 52, 376-386 (2004)
[5] Sotto, L. P.A.; Jacinto, G. S.; Villanoy, C. L., Spatiotemporal variability of hypoxia and eutrophication in Manila Bay, Philippines during the northeast and southwest monsoons, Mar Pollut Bull, 85, 2, 446-454 (2014)
[6] Munoz, J. C., Manila Bay fisheries: status and management, Mar Pollut Bull, 23, 311-314 (1991)
[7] Vallejo, B. M.; Aloy, A. B.; Ocampo, M.; Conejar-Espedido, J.; Manubag, L. M., Manila bay ecology and associated invasive species, (Makowski, C.; Finkl, C., Impacts of invasive species on coastal environments. Impacts of invasive species on coastal environments, Coastal research library, vol. 29 (2019)), 145-169
[8] AHA Centre and JICA, Natural disaster risk assessment and area business continuity plan formulation for industrial agglomerated areas in the ASEAN region (2015), Country Report: Country Report Philippines
[9] Shanmugam, G., Slides, slumps, debris flows, turbidity currents, and bottom currents: Implications, reference module in earth systems and environmental sciences (2018), Elsevier
[10] Dao, M. H.; Tkalich, P.; Chan, E. S.; Megawati, K., Tsunami propagation scenarios in the South China Sea, J Asian Earth Sci, 36, 1, 67-73 (2009)
[11] Terry, J. P.; Winspear, N.; Goff, J.; Tan, P. H.H., Past and potential tsunami sources in the South China Sea: A brief synthesis, Earth-Sci Rev, 67, 47-61 (2017)
[12] Waltham, T., The Asian Tsunami disaster, Geol Today, 21, 2004, 22-26 (2005)
[13] Strusińska-Correia, A., Tsunami mitigation in Japan after the 2011 Tōhoku Tsunami, Int J Disaster Risk Reduct, 22, 397-411 (2017)
[14] Preuss, J.; Raad, P.; Bidoae, R., Mitigation strategies based on local tsunami effects, (Hebenstreit, G. T., Tsunami research at the end of a critical decade. Tsunami research at the end of a critical decade, Advances in natural and technological hazards research, vol. 18 (2001)), 47-64
[15] Kathiresan, K.; Rajendran, N., Coastal mangrove forests mitigated tsunami, Estuar Coast Shelf Sci, 65, 3, 601-606 (2005)
[16] Bayas, J. C.L.; Marohn, C.; Dercon, G.; Dewi, S.; Piepho, H. P.; Joshi, L.; Van Noordwijk, M.; Cadisch, G., Influence of coastal vegetation on the 2004 tsunami wave impact in west Aceh, Proc Natl Acad Sci, 108, 46, 18612-18617 (2011)
[17] Hashim, A. M.; Catherine, S. M.P., A laboratory study on wave reduction by mangrove forests, APCBEE Procedia, 5, 27-32 (2013)
[18] Magdalena, I.; Roque, M. P., Analytical and numerical solution for wave reflection from a porous wave absorber, J Phys Conf Ser, 974, 1, Article 012042 pp. (2018), 2018
[19] Iryanto; Bunga, M. S.; Mustamiin, M.; Magdalena, I.; Erwina, N., Numerical modelling of mangrove merged with seawall for investigating wave mitigation over flat topography, J Phys Conf Ser, 1581, 1, Article 012001 pp. (2020)
[20] Magdalena, I.; Kusnowo, V.; Azis, M. I.; Widowati, 1d-2d numerical model for wave attenuation by mangroves as a porous structure, Computation, 9, 6, 66 (2021)
[21] Parvathy, K. G.; Bhaskaran, P. K., Wave attenuation in presence of mangroves: A sensitivity study for varying bottom slopes, Int J Ocean Clim Syst, 8, 3, 126-134 (2017)
[22] Bao, T. Q., Effect of mangrove forest structures on wave attenuation in coastal Vietnam, Oceanologia, 53, 3, 807-818 (2011)
[23] Ha, T.; Cho, Y.-S., Tsunami propagation over varying water depths, Ocean Eng, 101, 67-77 (2015)
[24] Kilinc, I.; Hayir, A.; Cigizoglu, H., Wave dispersion study for tsunami propagation in the Sea of Marmara, Coast Eng, 56, 982-991 (2009)
[25] Cheung, K.; Wei, Y.; Yamazaki, Y.; Yim, S., Modeling of 500-year tsunamis for probabilistic design of coastal infrastructure in the Pacific Northwest, Coast Eng, 58, 970-985 (2011)
[26] Apotsos, A.; Jaffe, B.; Gelfenbaum, G., Wave characteristic and morphologic effects on the onshore hydrodynamic response of tsunamis, Coast Eng, 58, 1034-1048 (2011)
[27] Nandasena, N.; Sasaki, Y.; Tanaka, N., Modeling field observations of the 2011 Great East Japan tsunami: efficacy of artificial and natural structures on tsunami mitigation, Coast Eng, 67, 1-13 (2012)
[28] Sheehan, A. F.; Gusman, A. R.; Satake, K., Improving forecast accuracy with tsunami data assimilation: The 2009 Dusky Sound, New Zealand, tsunami, J Geophys Res: Solid Earth, 124, 566-577 (2019)
[29] Ferrolino, A.; Mendoza, R.; Magdalena, I.; Lope, J. E., Application of particle swarm optimization in optimal placement of tsunami sensors, PeerJ Comput Sci, 6, Article e333 pp. (2020)
[30] Magdalena, I., A dispersive numerical model for the formation of undular bores generated by tsunami wave fission, East Asian J Appl Math, 7, 4, 767-784 (2017) · Zbl 1403.76057
[31] Eymard, R.; Gallouët, T.; Herbin, R., Finite volume methods, (Handbook of numerical analysis (2000), Elsevier), 713-1018 · Zbl 0981.65095
[32] Greaves, D., Application of the finite volume method to the simulation of nonlinear water waves, (Advances in coastal and ocean engineering (2010)), 357-396, 2010 · Zbl 1235.76083
[33] Rehman, A.; Aslam, R. D.; Meraj, M. A.; Qamar, S., High order finite volume weighted essentially non-oscillatory scheme for solving the isentropic two-phase flow model, Results Appl Math, 10, 00155 (2021) · Zbl 1469.76072
[34] Pudjaprasetya, S. R.; Magdalena, I., Momentum conservative schemes for shallow water flows, East Asian J Appl Math, 4, 2, 152-165 (2014) · Zbl 1309.76138
[35] Stelling, G. S.; Duinmeijer, S. P.A., A staggered conservative scheme for every froude number in rapidly varied shallow water flows, Internat J Numer Methods Fluids, 43, 12, 1329-1354 (2003) · Zbl 1062.76541
[36] Magdalena, I.; Rif’atin, H. Q.; Reeve, D. E., Seiches and harbour oscillations in a porous semi-closed basin, Appl Math Comput, 369, Article 124835 pp. (2020) · Zbl 1433.76025
[37] Magdalena, I.; Iryanto; Reeve, D. E., Free surface long wave propagation over linear and parabolic transition shelves, Water Sci Eng, 11, 4, 318-327 (2018)
[38] Andadari, G.; Magdalena, I., Analytical and numerical studies of resonant wave run-up on a plane structure, J Phys Conf Ser, 1321, Article 022079 pp. (2019)
[39] Magdalena, I.; Pudjaprasetya, S. R.; Wiryanto, L. H., Wave interaction with emerged porous media, Adv Appl Math Mech, 6, 5, 680-692 (2014)
[40] Magdalena, I.; Rif’atin, H. Q., Analytical and numerical studies for harbor oscillation in a semi-closed basin of various geometric shapes with porous media, Math Comput Simulation, 170, 351-365 (2020) · Zbl 1510.76166
[41] Magdalena, I.; Pudjaprasetya, S. R., Numerical modeling of 2D wave refraction and shoaling, AIP Conf Proc, 1589, 480-483 (2014)
[42] Briggs, M. J.; Synolakis, C. E.; Harkins, G. S.; Green, D. R., Laboratory experiments of395tsunami runup on a circular island, Pure Appl Geophys PAGEOPH, 144, 3-4, 569-593 (1995)
[43] NOAA. Tsunami runup onto a complex three-dimensional beach; Monai Valley. Retrieved from https://nctr.pmel.noaa.gov/benchmark/Laboratory/Laboratory_MonaiValley/.
[44] Garcia, K.; Malabrigo, P.; Gevaña, D., Philippines’ mangrove ecosystem: Status, threats and conservation, (Faridah-Hanum, I.; Latiff, A.; Hakeem, K.; Ozturk, M., Mangrove ecosystems of Asia (2014)), 81-94
[45] Philippine strategy on climate change adaptation (2009), Retrieved from https://climate-laws.org/geographies/philippines/policies/philippine-strategy-on-climate-change-adaptation
[46] Moaje, M., Manila Bay dolomite sand project stirs controversy (2020), Philippine News Agency, Retrieved from https://www.pna.gov.ph/articles/1125931
[47] Official statement of the UP marine science institute on the dolomite sand in Manila Bay (2020), Retrieved from http://www.msi.upd.edu.ph/
[48] IB statement regarding dolomite in manila bay (2020), Retrieved from https://biology.science.upd.edu.ph/index.php/ib-statement-regarding-dolomite-in-manila-bay/
[49] Nagelkerken, I.; Blaber, S.; Bouillon, S.; Green, P.; Haywood, M.; Kirton, L. G.; Meynecke, J. O.; Pawlik, J.; Penrose, H. M.; Sasekumar, A.; Somerfield, P. J., The habitat function of mangroves for terrestrial and marina fauna: a review, Aquat Bot, 89, 2, 155-185 (2008)
[50] Primavera, J. H.; Esteban, J. M.A., A review of mangrove rehabilitation in the Philippines: successes, failures and future prospects, Wetl Ecol Manag, 16, 3, 173-253 (2008)
[51] Camacho, L.; Gevaña, D.; Carandang, A.; Camacho, S.; Combalicer, E.; Rebugio, L.; Youn, Y.-C., Tree biomass and carbon stock of a community-managed mangrove forest in Bohol, Philippines, For Sci Technol, 7, 4, 161-167 (2011)
[52] Menéndez, P.; Losada, I. J.; Torres-Ortega, S.; Narayan, S.; Beck, M. W., The global flood protection benefits of mangroves, Sci Rep, 10, 4404 (2020)
[53] Velasco, P. J., Manila bay: a daunting challenge in environmental rehabilitation and protection, Oregon Rev Int Law, 11, 2, 441-460 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.