×

Numerical calculations on multi-photon processes in alkali metal vapors. (English) Zbl 1496.81023

Daras, Nicholas J. (ed.) et al., Approximation and computation in science and engineering. Cham: Springer. Springer Optim. Appl. 180, 627-642 (2022).
Summary: We present the theoretical framework and the approximations needed to numerically simulate the response of alkali metal atoms under multi-photon excitation. By applying the semi-classical approximation, we obtain a system of coupled ordinary and partial differential equations accounting both for the nonlinear dynamics of the atomic medium and the spatiotemporal evolution of the emitted fields. The case of two-photon excitation by a laser field with an additional one-photon coupling field is investigated by numerically solving the set of differential equations employing a self-consistent computational scheme. The computation of the emission intensities and atomic level populations and coherences is then possible.
For the entire collection see [Zbl 1485.65002].

MSC:

81-10 Mathematical modeling or simulation for problems pertaining to quantum theory
78A60 Lasers, masers, optical bistability, nonlinear optics
81V80 Quantum optics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Boyd, R., Nonlinear Optics (2008), London: Academic Press, London
[2] Katharakis, M.; Merlemis, N.; Serafetinides, A.; Efthimiopoulos, T., Four-wave mixing and parametric four-wave mixing near the 4P-4S transition of the potassium atom, J. Phys. B-Atomic Mol. Optical Phys., 35, 24, 4969-4980 (2002) · doi:10.1088/0953-4075/35/24/302
[3] Merlemis, N.; Katharakis, M.; Koudoumas, E.; Efthimiopoulos, T., Stimulated emissions and quantum interference in potassium atom-laser interaction, J. Phys. B-Atomic Mol. Optical Phys., 36, 10, 1943-1956 (2003) · doi:10.1088/0953-4075/36/10/305
[4] Deng, L.; Payne, MG; Garrett, WR, Effects of multi-photon interferences from internally generated fields in strongly resonant systems, Phys. Rep., 429, 3-4, 123-241 (2006) · doi:10.1016/j.physrep.2006.03.005
[5] A. Armyras, D. Pentaris, T. Efthimiopoulos, N. Merlemis, A. Lyras, Saturation and population transfer of a two-photon excited four-level potassium atom. J. Phys. B: At. Mol. Opt. Phys. 44(16), 165401 (2011)
[6] G. Morigi, S. Franke-Arnold, G. L. Oppo, Phase-dependent interaction in a four-level atomic configuration. Phys. Rev. A At. Mol. Opt. Phys. 66(5), 9 (2002)
[7] Korsunsky, EA; Halfmann, T.; Marangos, JP; Bergmann, K., Analytical study of four-wave mixing with large atomic coherence, Eur. Phys. J. D, 23, 1, 167-180 (2003) · doi:10.1140/epjd/e2003-00029-5
[8] Kajari-Schröder, S.; Morigi, G.; Franke-Arnold, S.; Oppo, G-L, Phase-dependent light propagation in atomic vapors, Phys. Rev. A, 75, 12816, 1-14 (2007)
[9] Pentaris, D.; Efthimiopoulos, T.; Merlemis, N.; Vaičaitis, V., Axial and conical parametric emissions from potassium atoms under two-photon fs excitation, Appl. Phys. B: Lasers Opt., 98, 2-3, 383-390 (2010) · doi:10.1007/s00340-009-3801-8
[10] Vaičaitis, V.; Jarutis, V.; Pentaris, D., Conical third-harmonic generation in normally dispersive media, Phys. Rev. Lett., 103, 10, 4-7 (2009) · doi:10.1103/PhysRevLett.103.103901
[11] Pop, I.; Moorman, L., Electromagnetically induced generation, gain in delayed wave mixing, and measuring coherent states using quantum-interference windows, Phys. Rev. A, 60, 1, 678-686 (1999) · doi:10.1103/PhysRevA.60.678
[12] T. Efthimiopoulos, N. Merlemis, M. E. Movsessian, D. Pentaris, M. Katharakis, Action of counter-propagating laser beams on two-photon excitation of potassium vapour. J. Phys. B: At. Mol. Opt. Phys. 43(5), 055401 (2010)
[13] Skenderović, H.; Ban, T.; Vujičić, N.; Aumiler, D.; Vdović, S.; Pichler, G., Cone emission induced by femtosecond excitation in rubidium vapor, Phys. Rev. A, 77, 63816, 1-6 (2008)
[14] Wunderlich, RK; Garrett, WR; Hart, RC; Moore, MA; Payne, MG, Nonlinear optical processes near the sodium 4 D two-photon resonance, Phys. Rev. A, 41, 11, 6345-6360 (1990) · doi:10.1103/PhysRevA.41.6345
[15] Yu, H.; Chen, F.; He, Y.; Pan, Q.; Yu, D.; Xie, J., Nonlinear phase matching in parametric four-wave mixing process of Cs vapor, Optik, 205, 163583 (2020) · doi:10.1016/j.ijleo.2019.163583
[16] M. M. Curčić, T. Khalifa, B. Zlatković, I.S. Radojičić, A.J. Krmpot, D. Arsenović, B.M. Jelenković, M. Gharavipour, Four-wave mixing in potassium vapor with an off-resonant double-Λ system. Phys. Rev. A 97(6), 063851 (2018)
[17] Chang-Jun, Z.; Jun-Fang, H.; Bing, X.; Xue-Jun, Z., Observation of quantum beat in Rb by parametric four-wave mixing, Chin. Phys. Lett., 24, 8, 2234-2237 (2007) · doi:10.1088/0256-307X/24/8/022
[18] Shi, G.; Zhu, C.; Xue, B.; Zhai, X., Control of two IR signals from coupled parametric six-wave mixing processes in Rb vapor, Optik, 126, 20, 2278-2281 (2015) · doi:10.1016/j.ijleo.2015.05.116
[19] B. Zlatković, A.J. Krmpot, N. Šibalić, M. Radonjić, B.M. Jelenković, Efficient parametric non-degenerate four-wave mixing in hot potassium vapor. Laser Phys. Lett. 13(1), 015205 (2016)
[20] H. Yu, F. Chen, Q. Pan, Y. He, J. Xie, Modeling and analysis of the pumping threshold characteristics in one-color two-photon excited Cs vapor. IEEE J. Quantum Electron. 56(2), 1500106 (2020)
[21] N.R. De Melo, S.S. Vianna, Frequency shift in three-photon resonant four-wave mixing by internal atom-field interaction. Phys. Rev. A: At. Mol. Opt. Phys. 92(5), 053830 (2015)
[22] Głódź, M.; Huzandrov, A.; Magnier, S.; Petrov, L.; Sydoryk, I.; Szonert, J.; Klavins, J.; Kowalski, K., Energy transfer reaction K(4s) + K(7s)→ K(4s) + K(5f), theory compared with experiment, J. Quant. Spectrosc. Radiat. Transf., 227, 152-169 (2019) · doi:10.1016/j.jqsrt.2019.01.009
[23] B.V. Zhdanov, R.J. Knize, DPAL: historical perspective and summary of achievements, in Technologies for Optical Countermeasures X; and High-Power Lasers 2013: Technology and Systems, ed. by D.H. Titterton, M.A. Richardson, R.J. Grasso, H. Ackermann, W.L. Bohn, vol. 8898 (SPIE, 2013), p. 88980V
[24] B.V. Zhdanov, R.J. Knize, Advanced diode-pumped alkali lasers, in Advanced Laser Technologies 2007, ed. by I.A. Shcherbakov, R. Myllylä, A.V. Priezzhev, M. Kinnunen, V.I. Pustovoy, M.Y. Kirillin, A.P. Popov, vol. 7022 (SPIE, 2008), p. 70220J
[25] B.V. Zhdanov, R.J. Knize, Diode pumped alkali lasers, in Technologies for Optical Countermeasures VIII, ed. by D.H. Titterton, M.A. Richardson, vol. 8187 (SPIE, 2011), p. 818707
[26] Y. Makdisi, J. Kokaj, K. Afrousheh, R. Nair, J. Mathew, G Pichler, Femtosecond laser fluorescence and propagation in very dense potassium vapor. Opt. Exp. 21(25), 30306 (2013)
[27] Lu, ZH; Zhu, CJ; Senin, AA; Allen, JR; Gao, J.; Eden, JG, Production and probing of atomic wavepackets with ultrafast laser pulses: Applications to atomic and molecular dynamics, IEEE J. Sel. Topics Quantum Electron., 10, 1, 159-168 (2004) · doi:10.1109/JSTQE.2004.824097
[28] Garrett, WR; Moore, MA; Hart, RC; Payne, MG; Wunderlich, R., Suppression effects in stimulated hyper-Raman emissions and parametric four-wave mixing in sodium vapor, Phys. Rev. A, 45, 9, 6687-6709 (1992) · doi:10.1103/PhysRevA.45.6687
[29] Liu, C.; Dutton, Z.; Behroozi, CH; Vestergaard Hau, L.; Hau, LV, Observation of coherent optical information storage in an atomic medium using halted laser pulses, Nature, 409, 6819, 490-493 (2001) · doi:10.1038/35054017
[30] Dudin, YO; Li, L.; Kuzmich, A., Light storage on the time scale of a minute, Phys. Rev. A: At. Mol. Opt. Phys., 87, 3, 1-4 (2013) · doi:10.1103/PhysRevA.87.031801
[31] Pentaris, D.; Marinos, T.; Merlemis, N.; Efthimiopoulos, T., Optical free induction memory in potassium vapor under a partially-truncated two-photon excitation, J. Mod. Opt., 56, 6, 840-850 (2009) · Zbl 1170.78415 · doi:10.1080/09500340802357323
[32] O. Katz, O. Firstenberg, Light storage for one second in room-temperature alkali vapor. Nat. Commun. 9(1), 2074 (2018)
[33] Harris, SE; Miles, RB, Proposed third-harmonic generation in phase-matched metal vapors, Appl. Phys. Lett., 19, 10, 385-387 (1971) · doi:10.1063/1.1653740
[34] Harris, SE, Electromagnetically induced transparency, Phys. Today, 50, 7, 36-42 (1997) · doi:10.1063/1.881806
[35] Braje, DA; Balić, V.; Goda, S.; Yin, GY; Harris, SE, Frequency mixing using electromagnetically induced transparency in cold atoms, Phys. Rev. Lett., 93, 18, 18-21 (2004) · doi:10.1103/PhysRevLett.93.183601
[36] Paspalakis, E.; Kylstra, NJ; Knight, PL, Transparency induced via decay interference, Phys. Rev. Lett., 82, 10, 2079-2082 (1999) · doi:10.1103/PhysRevLett.82.2079
[37] Eisaman, MD; André, A.; Massou, F.; Fleischhauer, M.; Zibrov, AS; Lukin, MD, Electromagnetically induced transparency with tunable single-photon pulses, Nature, 438, 7069, 837-841 (2005) · doi:10.1038/nature04327
[38] Paspalakis, E.; Knight, PL, Transparency, slow light and enhanced nonlinear optics in a four-level scheme, J. Opt. B: Quantum Semiclassical Opt., 4, 4, 372-375 (2002) · doi:10.1088/1464-4266/4/4/322
[39] Mompart, J.; Corbalan, R., Lasing without inversion, J. Opt. B, 2, 7-24 (2000) · doi:10.1088/1464-4266/2/3/201
[40] Merlemis, N.; Lyras, A.; Katharakis, M.; Efthimiopoulos, T., Amplified spontaneous emission without population inversion in potassium vapour by internally generated fields, J. Phys. B: At. Mol. Opt. Phys., 39, 8, 1913-1927 (2006) · doi:10.1088/0953-4075/39/8/009
[41] Harris, SE, Lasers without inversion: interference of lifetime-broadened resonances, Phys. Rev. Lett., 62, 9, 1033-1036 (1989) · doi:10.1103/PhysRevLett.62.1033
[42] Braunstein, D.; Shuker, R., Dressed states analysis of lasing without population inversion in a three-level ladder scheme: approximate analytic time dependent solutions, Laser Phys., 19, 2, 290-304 (2009) · doi:10.1134/S1054660X09020236
[43] Liu, J-C; Zhang, Y-Q; Chen, L., Coherent control of nondegenerate two-photon absorption by femtosecond laser pulses, J. Mod. Opt., 61, 10, 781-786 (2014) · doi:10.1080/09500340.2013.821534
[44] Brewer, RG; Shoemaker, RL, Optical free induction decay, Phys. Rev. A, 6, 6, 2001-2007 (1972) · doi:10.1103/PhysRevA.6.2001
[45] Boller, K.; Imamolu, A.; Harris, SE, Observation of electromagnetically induced transparency, Phys. Rev. Lett., 66, 20, 2593-2596 (1991) · doi:10.1103/PhysRevLett.66.2593
[46] Field, JE; Hahn, KH; Harris, SE, Observation of electromagnetically induced transparency in collisionally broadened lead vapor, Phys. Rev. Lett., 67, 22, 3062-3065 (1991) · doi:10.1103/PhysRevLett.67.3062
[47] Hakuta, K.; Marmet, L.; Stoicheff, BP, Nonlinear optical-generation with reduced absorption using electric-field coupling in atomic-hydrogen, Phys. Rev. A, 45, 7, 5152-5159 (1992) · doi:10.1103/PhysRevA.45.5152
[48] Thompson, RI; Stoicheff, BP; Zhang, GZ; Hakuta, K., Nonlinear generation of 103 nm radiation with electromagnetically-induced transparency in atomic hydrogen, Quantum Opt. J. Eur. Opt. Soc. B, 6, 4, 349-358 (1994) · doi:10.1088/0954-8998/6/4/012
[49] Arkhipkin, VG, Resonant Raman frequency mixing under electromagnetically induced transparency conditions, Quantum Electron., 27, 4, 341-345 (1997) · doi:10.1070/QE1997v027n04ABEH000946
[50] Clark, BK; Masters, M.; Huennekens, J., Wave mixing and amplified spontaneous emission in pure potassium and mixed sodium-potassium vapors, Appl. Phys. B Photophys. Laser Chem., 47, 2, 159-167 (1988) · doi:10.1007/BF00684083
[51] Jabbour, ZJ; Malcuit, MS; Huennekens, J., Broadly tunable near-infrared six-wave mixing processes in potassium vapor, Appl. Phys. B Photophys. Laser Chem., 52, 4, 281-289 (1991) · doi:10.1007/BF00325406
[52] Efthimiopoulos, T.; Movsessian, ME; Katharakis, M.; Merlemis, N., Cascade emission and four-wave mixing parametric processes in potassium, J. Appl. Phys., 80, 2, 639-643 (1996) · doi:10.1063/1.362872
[53] S.M. Hamadani, J.A.D Stockdale, R.N. Compton, M.S. Pindzola, Two-photon resonant four-wave mixing and multiphoton ionization of cesium in a heat-pipe oven. Phys. Rev. A 34(3), 1938-1943 (1986)
[54] Moore, MA; Garrett, WR; Payne, MG, Suppression of electronic hyper-Raman emission by four-wave mixing interference, Opt. Commun., 68, 4, 310-316 (1988) · doi:10.1016/0030-4018(88)90406-3
[55] Malcuit, M.; Gauthier, D.; Boyd, R.; York, W., Suppression of amplified spontaneous emission by the four-wave mixing process, Phys. Rev. Lett., 55, 10, 1086-1089 (1985) · doi:10.1103/PhysRevLett.55.1086
[56] Garrett, WR, Forward gain suppression of optically pumped stimulated emissions due to self-induced wave-mixing interference during a pump pulse, Phys. Rev. Lett., 70, 26, 4059-4062 (1993) · doi:10.1103/PhysRevLett.70.4059
[57] Movsessian, ME; Papoyan, AV; Shmavonyan, SV, Radiation amplification and image conversion in stimulated PFWM in potassium vapor, Int. J. Nonlinear Opt. Phys., 1, 4, 775-783 (1992) · doi:10.1142/S0218199192000388
[58] Omenetto, N.; Matveev, OI; Resto, W.; Badini, R.; Smith, BW; Winefordner, JD, Nonlinear behaviour of atomic fluorescence in mercury vapours following double-resonance laser excitation, Appl. Phys. B Laser Opt., 58, 4, 303-307 (1994) · doi:10.1007/BF01082625
[59] N. Merlemis, G. Papademetriou, D. Pentaris, T. Efthimiopoulos, V. Vaičaitis, Axial coherent emissions controlled by an internal coupling field in an open four-level potassium system. Appl. Phys. B 124(7), 145 (2018)
[60] Pentaris, D.; Efthimiopoulos, T.; Merlemis, N.; Lyras, A., Control of the emission channels response in laser- potassium atom interaction, J. Phys. B: Atomic Mol. Opt. Phys., 205505, 45, 1-24 (2012)
[61] Eicher, H., Third-order susceptibility of alkali metal vapors, IEEE J. Quantum Electron., 11, 4, 121-130 (1975) · doi:10.1109/JQE.1975.1068583
[62] Pentaris, D.; Damianos, D.; Papademetriou, G.; Lyras, A.; Steponkevičius, K.; Vaičaitis, V.; Efthimiopoulos, T., Coherently controlled emissions |4P_3∕2,1∕2〉↔|4S_1∕2〉 from a femtosecond Λ-type excitation scheme in potassium atom, J. Mod. Opt., 0340, February, 1-12 (2016) · doi:10.1080/09500340.2016.1142620
[63] Scully, MO; Zubairy, SM, Quantum Optics (1997), London: Cambridge University Press, London · doi:10.1017/CBO9780511813993
[64] Dixit, SN; Lambropoulos, P., Theory of photoelectron angular distributions in resonant multiphoton ionization, Phys. Rev. A, 27, 2, 861-874 (1983) · doi:10.1103/PhysRevA.27.861
[65] Dixit, S.; Lambropoulos, P.; Zoller, P., Spin polarization of electrons in two-photon resonant three-photon ionization, Phys. Rev. A, 24, 1, 318-325 (1981) · doi:10.1103/PhysRevA.24.318
[66] Georges, AT; Lambropoulos, P.; Marburger, JH, Theory of third-harmonic generation in metal vapors under two-photon resonance conditions, Phys. Rev. A, 15, 1, 300-307 (1977) · doi:10.1103/PhysRevA.15.300
[67] Teague, MR; Lambropoulos, P., Three-photon ionization with spin-orbit coupling, J. Phys. B: Atomic Mol. Phys., 9, 8, 1251-1262 (1976) · doi:10.1088/0022-3700/9/8/011
[68] Armyras, A.; Pentaris, D.; Merlemis, N.; Lyras, A.; Efthimiopoulos, T., The saturation effect of the parametric emission in potassium atoms under two-photon excitation, AIP Conf. Proc., 1288, 80-83 (2010) · doi:10.1063/1.3521378
[69] Pentaris, D.; Papademetriou, G.; Efthimiopoulos, T.; Merlemis, N.; Lyras, A., Emissions enhancement in a pump-coupling V-type coherently controlled four-level atomic system, J. Mod. Opt., 60, 21, 1855-1868 (2013) · doi:10.1080/09500340.2013.863985
[70] G. Papademetriou, D. Pentaris, T. Efthimiopoulos, A. Lyras, Dynamic emission and population control in a Λ-type excitation scheme of atomic potassium. J. Phys. B: Atomic Mol. Opt. Phys. 50(12), 125401 (2017)
[71] Gaižauskas, E.; Pentaris, D.; Efthimiopoulos, T.; Vaičaitis, V., Probing electronic coherences by combined two- and one-photon excitation in atomic vapors, Opt. Lett., 38, 2, 124-126 (2013) · doi:10.1364/OL.38.000124
[72] Shore, BW, The Theory of Coherent Atomic Excitation (1990), New York: Wiley, New York
[73] Gardiner, C.; Zoller, P., Quantum Noise - A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics (2004), Berlin Heidelberg: Springer, Berlin Heidelberg · Zbl 1072.81002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.