Dudek, Wieslaw A. Automorphisms of \(n\)-ary groups. (English) Zbl 1497.20066 Result. Math. 77, No. 1, Paper No. 46, 16 p. (2022). By the Hosszú-Gluskin theorem every \(n\)-group (\(n > 2\)) \((G,f)\) can be derived from a binary group \((G, \cdot )\), an automorphism \(\varphi \) of \((G, \cdot )\) and an element \(b \in G\) such that \(\varphi (b) = b\), denote \((G,f) = \mathrm{der}_{\varphi ,b}(G, \cdot )\). Here, automorphisms and autotopies of \(n\)-ary groups are studied using this fact. Bijections \({\alpha _1},\dots ,{\alpha _n},\delta \) from an \(n\)-groupoid \((G,f)\) to an \(n\)-groupoid \((H,g)\) are an isotopy between \((G,f)\) and \((H,g)\) iff \(\delta (f({x_1},\dots ,{x_n})) = g({\alpha _1}{x_1},\dots ,{\alpha _n}{x_n})\). For instance, it is shown that groups of autotopies of isotopic \(n\) -groups are isomorphic, number of autotopies of \(n\)-group \((G,f)\) is \(|G{|^n} \cdot |\operatorname{Aut}(G, \cdot )|\) and the number of automorphisms of a derived \(n\)-group \(\mathrm{der}_{\varphi ,b}(G, \cdot )\) is expressed using properties of the binary group \((G, \cdot )\). Reviewer: Jaak Henno (Tallinn) Cited in 1 ReviewCited in 1 Document MSC: 20N15 \(n\)-ary systems \((n\ge 3)\) Keywords:autotopy; isotopy; automorphism; \(n\)-ary group × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Belousov, V.D.: \(n\)-Ary Quasigroups. Sţiinţa, Chişinǎu (1972). (Russian) [2] Dörnte, W., Untersuchungen über einen verallgemeinerten Gruppenbegriff, Math. Z., 29, 1-19 (1928) · JFM 54.0152.01 · doi:10.1007/BF01180515 [3] Dudek, WA, Remarks on \(n\)-groups, Demonstr. Math., 13, 165-181 (1980) · Zbl 0447.20052 [4] Dudek, WA, Idempotents in \(n\)-ary semigroups, Southeast Asian Bull. Math., 25, 97-104 (2001) · Zbl 0986.20068 · doi:10.1007/s10012-001-0097-y [5] Dudek, WA, Varieties of polyadic groups, Filomat, 9, 657-674 (1995) · Zbl 0860.20056 [6] Dudek, WA; Głazek, K., Around the Hosszú-Gluskin Theorem for \(n\)-ary groups, Discrete Math., 308, 4861-4876 (2008) · Zbl 1153.20050 · doi:10.1016/j.disc.2007.09.005 [7] Dudek, W.A., Głazek, K., Gleichgewicht, B.: A note on the axioms of \(n\)-groups. Colloquia Math. Soc. J. Bolyai bf 29 “Universal Algebra”, Esztergom (Hungary), (1977), 195-202. North-Holland, Amsterdam (1982) · Zbl 0525.20059 [8] Dudek, WA; Michalski, J., On a generalization of Hosszú theorem, Demonstr. Math., 15, 783-805 (1982) · Zbl 0523.20045 [9] Dudek, WA; Michalski, J., On retracts of polyadic groups, Demonstr. Math., 17, 281-301 (1984) · Zbl 0573.20067 [10] Gorkunov, EV; Krotov, DS; Potapov, VN, On the number of autotopies of an \(n\)-ary quasigroup of order 4, Quasigroups Relat. Syst., 27, 227-250 (2019) · Zbl 1435.20081 [11] Gluskin, L.M.: Positional operatives. Mat. Sbornik (N.S.) 68(110), 444-472 (1965). (Russian) · Zbl 0244.20092 [12] Hillar, ChJ; Rhea, DL, Automorphisms of finite abelian groups, Am. Math. Mon., 114, 917-923 (2007) · Zbl 1156.20046 · doi:10.1080/00029890.2007.11920485 [13] Hosszú, M., On the explicit form of \(n\)-group operations, Publ. Math. Debrecen, 10, 88-92 (1963) · Zbl 0118.26402 [14] Khodabandeh, H.; Shahryari, M., On the automorphisms and representations of polyadic groups, Commun. Algebra, 40, 2199-2212 (2012) · Zbl 1257.20074 · doi:10.1080/00927872.2011.576738 [15] Marini, A.; Shcherbacov, V., On autotopies and automorphisms of \(n\)-ary linear quasigroups, Algebra Discrete Math., 2, 59-83 (2004) · Zbl 1067.20085 [16] Post, EL, Polyadic groups, Trans. Am. Math. Soc., 48, 208-350 (1940) · JFM 66.0099.01 · doi:10.1090/S0002-9947-1940-0002894-7 [17] Shcherbacov, V., Elements of Quasigroups and Applications (2017), CRC Press: Taylor & Francis Group, CRC Press · Zbl 1491.20003 · doi:10.1201/9781315120058 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.