×

Variable solution structure can be helpful in evolutionary optimization. (English) Zbl 1497.94050


MSC:

94A29 Source coding
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bäck T. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford: Oxford University Press, 1996 · Zbl 0877.68060
[2] Goldberg D E. Genetic Algorithms in Search, Optimization, and Machine Learning. Boston: Addison-Wesley, 1989 · Zbl 0721.68056
[3] Koza J R. Genetic programming as a means for programming computers by natural selection. Stat Comput, 1994, 4: 87-112 · doi:10.1007/BF00175355
[4] Rothlauf F. Representations for Genetic and Evolutionary Algorithms. Berlin: Springer, 2006 · doi:10.1007/3-540-32444-5_2
[5] Hoai N X, McKay R I, Essam D. Representation and structural difficulty in genetic programming. IEEE Trans Evol Comput, 2006, 10: 157-166 · doi:10.1109/TEVC.2006.871252
[6] Poli R, Langdon W B, McPhee N F. A Field Guide to Genetic Programming. Barking: Lulu Enterprises, 2008
[7] Koza J R. Human-competitive results produced by genetic programming. Genet Program Evol Mach, 2010, 11: 251-284 · doi:10.1007/s10710-010-9112-3
[8] Khan S, Baig A R, Ali A, et al. Unordered rule discovery using Ant Colony Optimization. Sci China Inf Sci, 2014, 57: 092116 · Zbl 1425.90137
[9] Guo W, Liu G, Chen G, et al. A hybrid multi-objective PSO algorithm with local search strategy for VLSI partitioning. Front Comput Sci, 2014, 8: 203-216 · doi:10.1007/s11704-014-3008-y
[10] Poli R, Vanneschi L, Langdon W B, et al. Theoretical results in genetic programming: the next ten years? Genet Program Evol Mach, 2010, 11: 285-320 · doi:10.1007/s10710-010-9110-5
[11] Durrett, G.; Neumann, F.; O’Reilly, U. M., Computational complexity analysis of simple genetic programming on two problems modeling isolated program semantics, 69-80 (2011) · Zbl 1369.68305
[12] Wagner, M.; Neumann, F., Single- and multi-objective genetic programming: new runtime results for sorting, 125-132 (2014)
[13] Kötzing, T.; Sutton, A. M.; Neumann, F.; etal., The Max problem revisited: the importance of mutation in genetic programming, 1333-1340 (2012)
[14] Nguyen, A.; Urli, T.; Wagner, M., Single- and multi-objective genetic programming: new bounds for weighted order and majority, 161-172 (2013) · Zbl 1369.68324
[15] Kötzing, T.; Neumann, F.; Spöhel, R., PAC learning and genetic programming, 2091-2096 (2011)
[16] Neumann, F., Computational complexity analysis of multi-objective genetic programming, 799-806 (2012)
[17] Wagner, M.; Neumann, F., Parsimony pressure versus multi-objective optimization for variable length representations, 133-142 (2012) · doi:10.1007/978-3-642-32937-1_14
[18] He J, Yao X. Drift analysis and average time complexity of evolutionary algorithms. Artif Intell, 2001, 127: 57-85 · Zbl 0971.68129 · doi:10.1016/S0004-3702(01)00058-3
[19] Droste S, Jansen T, Wegener I. On the analysis of the (1+1) evolutionary algorithm. Theor Comput Sci, 2002, 276: 51-81 · Zbl 1002.68037 · doi:10.1016/S0304-3975(01)00182-7
[20] Auger A, Doerr B. Theory of Randomized Search Heuristics: Foundations and Recent Developments. Singapore: World Scientific, 2011 · Zbl 1233.90005 · doi:10.1142/7438
[21] Neumann F, Witt C. Bioinspired Computation in Combinatorial Optimization: Algorithms and Their Computational Complexity. Berlin: Springer-Verlag, 2010 · Zbl 1223.68002 · doi:10.1007/978-3-642-16544-3
[22] Giel, O.; Wegener, I., Evolutionary algorithms and the maximum matching problem, 415-426 (2003) · Zbl 1036.68567
[23] Giel, O.; Wegener, I., Maximum cardinality matchings on trees by randomized local search, 539-546 (2006)
[24] Neumann F, Wegener I. Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theor Comput Sci, 2007, 378: 32-40 · Zbl 1117.68090 · doi:10.1016/j.tcs.2006.11.002
[25] Doerr B, Johannsen D, Winzen C. Multiplicative drift analysis. Algorithmica, 2012, 64: 673-697 · Zbl 1264.68220 · doi:10.1007/s00453-012-9622-x
[26] Raidl G R, Koller G, Julstrom B A. Biased mutation operators for subgraph-selection problems. IEEE Trans Evol Comput, 2006, 10: 145-156 · doi:10.1109/TEVC.2006.871251
[27] Neumann F, Wegener I. Minimum spanning trees made easier via multi-objective optimization. Nat Comput, 2006, 5: 305-319 · Zbl 1173.90535 · doi:10.1007/s11047-006-9004-x
[28] Yu Y, Zhou Z-H. A new approach to estimating the expected first hitting time of evolutionary algorithms. Artif Intell, 2008, 172: 1809-1832 · Zbl 1184.68479 · doi:10.1016/j.artint.2008.07.001
[29] Laumanns M, Thiele L, Zitzler E. Running time analysis of multiobjective evolutionary algorithms on pseudo-Boolean functions. IEEE Trans Evol Comput, 2004, 8: 170-182 · doi:10.1109/TEVC.2004.823470
[30] Qian C, Yu Y, Zhou Z-H. An analysis on recombination in multi-objective evolutionary optimization. Artif Intell, 2013, 204: 99-119 · Zbl 1334.68203 · doi:10.1016/j.artint.2013.09.002
[31] Giel O, Wegener I. Evolutionary algorithms and the maximum matching problem. University of Dortmund Technical Report CI 142/02. 2002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.