Chen, Zhixiong; Niu, Zhihua; Wu, Chenhuang On the \(k\)-error linear complexity of binary sequences derived from polynomial quotients. (English) Zbl 1497.94067 Sci. China, Inf. Sci. 58, No. 9, Article ID 092107, 15 p. (2015). Cited in 5 Documents MSC: 94A55 Shift register sequences and sequences over finite alphabets in information and communication theory × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Chen Z X, Winterhof A. Additive character sums of polynomial quotients. Contemp Math, 2012, 579: 67-73 · Zbl 1306.11096 · doi:10.1090/conm/579/11519 [2] Agoh T, Dilcher K, Skula L. Fermat quotients for composite moduli. J Number Theory, 1997, 66: 29-50 · Zbl 0884.11003 · doi:10.1006/jnth.1997.2162 [3] Aly H, Winterhof A. Boolean functions derived from Fermat quotients. Cryptogr Commun, 2011, 3: 165-174 · Zbl 1235.06014 · doi:10.1007/s12095-011-0043-5 [4] Bourgain J, Ford K, Konyagin S, et al. On the divisibility of Fermat quotients. Michigan Math J, 2010, 59: 313-328 · Zbl 1223.11116 · doi:10.1307/mmj/1281531459 [5] Chang M C. Short character sums with Fermat quotients. Acta Arith, 2012, 152: 23-38 · Zbl 1325.11081 · doi:10.4064/aa152-1-3 [6] Chen Z X, Du X N. On the linear complexity of binary threshold sequences derived from Fermat quotients. Des Codes Cryptogr, 2013, 67: 317-323 · Zbl 1296.94071 · doi:10.1007/s10623-012-9608-3 [7] Chen, ZX; Gómez-Pérez, D., Linear complexity of binary sequences derived from polynomial quotients, 181-189 (2012), Berlin · Zbl 1304.94024 [8] Chen, Z. X.; Ostafe, A.; Winterhof, A., Structure of pseudorandom numbers derived from Fermat quotients, 73-85 (2010), Berlin · Zbl 1230.11092 · doi:10.1007/978-3-642-13797-6_6 [9] Chen Z X, Winterhof A. On the distribution of pseudorandom numbers and vectors derived from Euler-Fermat quotients. Int J Number Theory, 2012, 8: 631-641 · Zbl 1315.11070 · doi:10.1142/S1793042112500352 [10] Chen Z X, Winterhof A. Interpolation of Fermat quotients. SIAM J Discr Math, 2014, 28: 1-7 · Zbl 1305.11002 · doi:10.1137/130907951 [11] Du X N, Chen Z X, Hu L. Linear complexity of binary sequences derived from Euler quotients with prime-power modulus. Inf Process Lett, 2012, 112: 604-609 · Zbl 1243.94026 · doi:10.1016/j.ipl.2012.04.011 [12] Du X N, Klapper A, Chen Z X. Linear complexity of pseudorandom sequences generated by Fermat quotients and their generalizations. Inf Process Lett, 2012, 112: 233-237 · Zbl 1242.94023 · doi:10.1016/j.ipl.2011.11.017 [13] Ernvall R, Metsänkylä T. On the p-divisibility of Fermat quotients. Math Comp, 1997, 66: 1353-1365 · Zbl 0903.11002 · doi:10.1090/S0025-5718-97-00843-0 [14] Gómez-Pérez D, Winterhof A. Multiplicative character sums of Fermat quotients and pseudorandom sequences. Period Math Hungar, 2012, 64: 161-168 · Zbl 1263.11110 · doi:10.1007/s10998-012-3747-1 [15] Ostafe A, Shparlinski I E. Pseudorandomness and dynamics of Fermat quotients. SIAM J Discr Math, 2011, 25: 50-71 · Zbl 1263.11003 · doi:10.1137/100798466 [16] Sha M. The arithmetic of Carmichael quotients. arXiv:1108.2579, 2011 [17] Shparlinski I E. Character sums with Fermat quotients. Quart J Math, 2011, 62: 1031-1043 · Zbl 1273.11126 · doi:10.1093/qmath/haq028 [18] Shparlinski I E. Bounds of multiplicative character sums with Fermat quotients of primes. Bull Aust Math Soc, 2011, 83: 456-462 · Zbl 1221.11004 · doi:10.1017/S000497271000198X [19] Shparlinski I E. On the value set of Fermat quotients. Proc Amer Math Soc, 2012, 140: 1199-1206 · Zbl 1305.11003 · doi:10.1090/S0002-9939-2011-11203-6 [20] Shparlinski I E. Fermat quotients: exponential sums, value set and primitive roots. Bull Lond Math Soc, 2011, 43: 1228-1238 · Zbl 1250.11005 · doi:10.1112/blms/bdr058 [21] Shparlinski I E, Winterhof A. Distribution of values of polynomial Fermat quotients. Finite Fields Appl, 2013, 19: 93-104 · Zbl 1305.11003 · doi:10.1016/j.ffa.2012.10.004 [22] Chen Z X. Trace representation and linear complexity of binary sequences derived from Fermat quotients. Sci China Inf Sci, 2014, 57: 112109 · Zbl 1398.94085 [23] Chen Z X, Hu L, Du X N. Linear complexity of some binary sequences derived from Fermat quotients. China Commun, 2012, 9: 105-108 [24] Lidl R, Niederreiter H. Finite Fields. 2nd Ed. Cambridge: Cambridge University Press, 1997 [25] Stamp M, Martin C F. An algorithm for the k-error linear complexity of binary sequences with period 2n. IEEE Trans Inf Theory, 1993, 39: 1398-1401 · Zbl 0801.94009 · doi:10.1109/18.243455 [26] Meidl W. How many bits have to be changed to decrease the linear complexity? Des Codes Cryptogr, 2004, 33: 109-122 · Zbl 1067.94011 · doi:10.1023/B:DESI.0000035466.28660.e9 [27] Ding C S, Xiao G Z, Shan W J. The Stability Theory of Stream Ciphers. Berlin: Springer-Verlag, 1991 · Zbl 0762.94008 · doi:10.1007/3-540-54973-0 [28] Massey J L. Shift register synthesis and BCH decoding. IEEE Trans Inf Theory, 1969, 15: 122-127 · Zbl 0167.18101 · doi:10.1109/TIT.1969.1054260 [29] Aly H, Meidl W, Winterhof A. On the k-error linear complexity of cyclotomic sequences. J Math Cryptol, 2007, 1: 283-296 · Zbl 1147.11065 · doi:10.1515/JMC.2007.014 [30] Aly H, Winterhof A. On the k-error linear complexity over \[\mathbb{F}_p\] of Legendre and Sidel’nikov sequences. Des Codes Cryptogr, 2006, 40: 369-374 · Zbl 1205.94069 · doi:10.1007/s10623-006-0023-5 [31] Aly H, Meidl W. On the linear complexity and k-error linear complexity over \[\mathbb{F}_p\] of the d-ary Sidel’nikov sequence. IEEE Trans Inf Theory, 2007, 53: 4755-4761 · Zbl 1325.94107 · doi:10.1109/TIT.2007.909129 [32] Brandstätter N, Winterhof A. k-error linear complexity over \[\mathbb{F}_p\] of subsequences of Sidel’nikov sequences of period (pr − 1)/3. J Math Cryptol, 2009, 3: 215-225 · Zbl 1185.94041 · doi:10.1515/JMC.2009.012 [33] Chung, J. H.; Yang, K., Bounds on the linear complexity and the 1-error linear complexity over \[\mathbb{F}_p\] of M-ary Sidel’nikov sequences, No. 4086, 74-87 (2006), Berlin · Zbl 1152.94377 · doi:10.1007/11863854_7 [34] Eun, Y. C.; Song, H. Y.; Kyureghyan, G. M., One-error linear complexity over \[\mathbb{F}_p\] of Sidel’nikov sequences, 154-165 (2005), Berlin · Zbl 1145.94415 [35] Garaev M Z, Luca F, Shparlinski I E, et al. On the lower bound of the linear complexity over \[\mathbb{F}_p\] of Sidel’nikov sequences. IEEE Trans Inf Theory, 2006, 52: 3299-3304 · Zbl 1296.94073 · doi:10.1109/TIT.2006.876352 [36] Helleseth T, Kim S H, No J S. Linear complexity over \[\mathbb{F}_p\] and trace representation of Lempel-Cohn-Eastman sequences. IEEE Trans Inf Theory, 2003, 49: 1548-1552 · Zbl 1063.94066 · doi:10.1109/TIT.2003.811924 [37] Helleseth T, Maas M, Mathiassen J E, et al. Linear complexity over \[\mathbb{F}_p\] of Sidel’nikov sequences. IEEE Trans Inf Theory, 2004, 50: 2468-2472 · Zbl 1293.94050 · doi:10.1109/TIT.2004.834854 [38] Shanks D. Solved and Unsolved Problems in Number Theory. New York: Chelsea Publishing Company, 1978 · Zbl 0397.10001 [39] Crandall R, Dilcher K, Pomerance C. A search for Wieferich and Wilson primes. Math Comp, 1997, 66: 433-449 · Zbl 0854.11002 · doi:10.1090/S0025-5718-97-00791-6 [40] Blackburn S R, Etzion T, Paterson K G. Permutation polynomials, de Bruijn sequences, and linear complexity. J Combin Theory Ser A, 1996, 76: 55-82 · Zbl 0871.11089 · doi:10.1006/jcta.1996.0088 [41] Etzion T, Kalouptsidis N, Kolokotronis N, et al. Properties of the error linear complexity spectrum. IEEE Trans Inf Theory, 2009, 55: 4681-4686 · Zbl 1367.94288 · doi:10.1109/TIT.2009.2027495 [42] Cusick T W, Ding C S, Renvall A. Stream Ciphers and Number Theory. Amsterdam: North-Holland Publishing Co., 1998 · Zbl 0930.11086 [43] Ding C S. Linear complexity of generalized cyclotomic binary sequences of order 2. Finite Fields Appl, 1997, 3: 159-174 · Zbl 0908.11062 · doi:10.1006/ffta.1997.0181 [44] Ding C S. Autocorrelation values of generalized cyclotomic sequences of order two. IEEE Trans Inf Theory, 1998, 44: 1699-1702 · Zbl 0943.94006 · doi:10.1109/18.681354 [45] Ding C S, Helleseth T, Shan W J. On the linear complexity of Legendre sequences. IEEE Trans Inf Theory, 1998, 44: 1276-1278 · Zbl 0912.94014 · doi:10.1109/18.669398 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.