Dai, Shuguang; Wei, Jinfeng; Zhang, Fangguo Memory leakage-resilient secret sharing schemes. (English) Zbl 1497.94082 Sci. China, Inf. Sci. 58, No. 11, Article ID 112109, 9 p. (2015). MSC: 94A60 Cryptography × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Shamir A. How to share a secret. Commun ACM, 1979, 22: 612-613 · Zbl 0414.94021 · doi:10.1145/359168.359176 [2] Blakley, G. R., Safeguarding cryptographic keys, 313-317 (1979) [3] Blundo, C.; Cresti, A.; Santis, A. D.; etal., Fully dynamic secret sharing schemes, 110-125 (1994) [4] Ito M, Saito A, Nishizeki T. Secret sharing scheme realizing any access structure. Electron Commun JPN III, 1989, 72: 56-64 · doi:10.1002/ecjc.4430720906 [5] Hsu C F, Cheng Q, Tang X M, et al. An ideal multi-secret sharing scheme based on MSP. Inf Sci, 2011, 181: 1403-1409 · Zbl 1251.94041 · doi:10.1016/j.ins.2010.11.032 [6] He J, Dawson E. Multisecret-sharing scheme based on one-way function. Electron Lett, 1995, 31: 93-95 · doi:10.1049/el:19950073 [7] Pang L J, Wang Y M. A new (t, n) multi-secret sharing scheme based on Shamir’s secret sharing. Appl Math Comput, 2005, 167: 840-848 · Zbl 1089.94029 · doi:10.1016/j.amc.2004.06.120 [8] Yang C C, Chang T Y, Hwang M S. A (t, n) multi-secret sharing scheme. Appl Math Comput, 2004, 151: 483-490 · Zbl 1045.94018 · doi:10.1016/S0096-3003(03)00355-2 [9] Shao J, Cao Z F. A new efficient (t, n) verifiable multi-secret sharing (VMSS) based on YCH scheme. Appl Math Comput, 2005, 168: 135-140 · Zbl 1076.94011 · doi:10.1016/j.amc.2004.08.023 [10] Dehkordi M H, Mashhadi S. New efficient and practical verifiable multi-secret sharing schemes. Inf Sci, 2008, 178: 2262-2274 · Zbl 1137.94009 · doi:10.1016/j.ins.2007.11.031 [11] Harn L, Lin C. Strong (n, t, n) verifiable secret sharing scheme. Inf Sci, 2010, 180: 3059-3064 · Zbl 1285.94067 · doi:10.1016/j.ins.2010.04.016 [12] Liu Y X, Harn L, Yang C N, et al. Efficient (n, t, n) secret sharing schemes. J Syst Softw, 2012, 85: 1325-1332 · doi:10.1016/j.jss.2012.01.027 [13] Stadler, M., Publicly verifiable secret sharing, 190-199 (1996) · Zbl 1304.94109 [14] Schoenmakers, B., A simple publicly verifiable secret sharing scheme and its application to electronic voting, 148-164 (1999) · Zbl 0940.94016 [15] Lu H C, Fu H L. New bounds on the average information rate of secret-sharing schemes for graph-based weighted threshold access structures. Inf Sci, 2013, 240: 83-94 · Zbl 1366.94559 · doi:10.1016/j.ins.2013.03.047 [16] Tang C M, Gao S H. Leakproof secret sharing protocols with applications to group identification scheme. Sci China Inf Sci, 2012, 55: 1172-1185 · Zbl 1245.94103 · doi:10.1007/s11432-011-4480-8 [17] Biham, E.; Shamir, A., Differential fault analysis of secret key cryptosystems, 513-525 (1997) · Zbl 0886.94010 [18] Halderman J A, Schoen S D, Heninger N, et al. Lest we remember: cold boot attacks on encryption keys. Commun ACM, 2009, 52: 45-60 · doi:10.1145/1506409.1506429 [19] Kocher, P. C., Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems, 104-113 (1996) · Zbl 1329.94070 [20] Kocher, P. C.; Jaffe, J.; Jun, B., Differential power analysis, 388-397 (1999) · Zbl 0942.94501 [21] Quisquater, J. J.; Samyde, D., Electromagnetic analysis (EMA): measures and counter-measures for smart cards, 200-210 (2001), Berlin/Heidelberg · Zbl 1003.68609 · doi:10.1007/3-540-45418-7_17 [22] Micali, S.; Reyzin, I., Physically observable cryptography, 278-296 (2004) · Zbl 1197.94197 · doi:10.1007/978-3-540-24638-1_16 [23] Naor, M.; Segev, G., Public-key cryptosystems resilient to key leakage, 18-35 (2009) · Zbl 1252.94091 [24] Lewko, A. B.; Rouselakis, Y.; Waters, B., Achieving leakage resilient through dual system encryption, 70-88 (2011) · Zbl 1291.94118 · doi:10.1007/978-3-642-19571-6_6 [25] Yuen, T. H.; Chow, S. S M.; Zhang, Y.; etal., Identity-based encryption resilient to continual auxiliary leakage, 117-134 (2012) · Zbl 1297.94114 [26] Katz, J.; Vaikuntanathan, V., Signature schemes with bounded leakage resilient, 703-720 (2009) · Zbl 1267.94072 [27] Malkin, T.; Teranishi, I.; Vahlis, Y.; etal., Signatures resilient to continual leakage on memory and computation, 89-106 (2011) · Zbl 1295.94185 · doi:10.1007/978-3-642-19571-6_7 [28] Garg, S.; Jain, A.; Sahai, A., Leakage-resilient zero knowledge, 297-315 (2011) · Zbl 1288.68081 [29] Boyle, E.; Goldwasser, S.; Jain, A.; etal., Multiparty computation secure against continual memory leakage, 1235-1254 (2012), New York · Zbl 1286.94060 [30] Boyle, E.; Goldwasser, S.; Jain, A.; etal., Secure computation against adaptive auxiliary information, 316-334 (2013) · Zbl 1310.94132 [31] Ananth, P.; Goyal, V.; Omkant, P., Interactive proofs under continual memory leakage, 164-182 (2014) · Zbl 1334.68076 [32] Akavia, A.; Goldwasser, S.; Vaikuntanathan, V., Simultaneous hardcore bits and cryptography against memory attacks, 474-495 (2009) · Zbl 1213.94075 · doi:10.1007/978-3-642-00457-5_28 [33] Pappu R S, Recht B, Taylor J, et al. Physical one-way functions, Science, 2002, 297: 2026-2030 · doi:10.1126/science.1074376 [34] Brzuska C, Fischlin M, Schröder H, et al. Physically uncloneable functions in the universal composition framework. In: Proceedings of 31st Annual Cryptology Conference, Santa Barbara, 2011, 2011. 51-70 · Zbl 1288.68059 [35] Dodis Y, Ostrovsky R, Reuzin L, et al. Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J Comput, 2008, 38: 97-139 · Zbl 1165.94326 · doi:10.1137/060651380 [36] Armknecht, F.; Maes, R.; Sadeghi, A. R.; etal., Memory leakage-resilient encryption based on physically unclonable functions, 685-702 (2009) · Zbl 1267.94031 [37] Krawczyk, H., Secret sharing made short, 136-146 (1993) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.