×

Controlling the key by choosing the detection bits in quantum cryptographic protocols. (English) Zbl 1497.94103


MSC:

94A60 Cryptography
Full Text: DOI

References:

[1] Wiesner S. Conjugate coding. SIGACT News, 1983, 15: 78-88 · Zbl 0521.94003 · doi:10.1145/1008908.1008920
[2] Bennett, C. H.; Brassard, G., Quantum cryptography: public-key distribution and coin tossing, 175-179 (1984)
[3] Ekert A K. Quantum cryptography based on Bell theorem. Phys Rev Lett, 1991, 67: 661-663 · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[4] Bennett C H. Quantum cryptography using any two nonorthogonal states. Phys Rev Lett, 1992, 68: 3121-3124 · Zbl 0969.94501 · doi:10.1103/PhysRevLett.68.3121
[5] Goldenberg L, Vaidman L. Quantum cryptography based on orthogonal states. Phys Rev Lett, 1995, 75: 1239-1243 · Zbl 1020.81548 · doi:10.1103/PhysRevLett.75.1239
[6] Zhang C M, Song X T, Treeviriyanupab P, et al. Delayed error verification in quantum key distribution. Chin Sci Bull, 2014, 59: 2825-2828 · doi:10.1007/s11434-014-0446-8
[7] Lin C Y, Hwang T. CNOT extraction attack on “quantum asymmetric cryptography with symmetric keys”. Sci China-Phys Mech Astron, 2014, 57: 1001-1003 · doi:10.1007/s11433-013-5290-3
[8] Su X L. Applying Gaussian quantum discord to quantum key distribution. Chin Sci Bull, 2014, 59: 1083-1090 · doi:10.1007/s11434-014-0193-x
[9] Liu B, Gao F, Qin S J, et al. Choice of measurement as the secret. Phys Rev A, 2014, 89: 042318
[10] Hillery M, Buzek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829-1834 · Zbl 1368.81066 · doi:10.1103/PhysRevA.59.1829
[11] Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting. Phys Rev A, 1999, 5: 162-168 · doi:10.1103/PhysRevA.59.162
[12] Long G L, Liu X. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A, 2002, 65: 032302 · doi:10.1103/PhysRevA.65.032302
[13] Boström K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902
[14] Cai Q Y, Li B W. Deterministic secure communication without using entanglement. Chin Phys Lett, 2004, 21: 601-603 · doi:10.1088/0256-307X/21/4/003
[15] Zou X F, Qiu D W. Three-step semiquantum secure direct communication protocol. Sci China-Phys Mech Astron, 2014, 57: 1696-1702 · doi:10.1007/s11433-014-5542-x
[16] Zheng C, Long G F. Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs. Sci China-Phys Mech Astron, 2014, 57: 1238-1243 · doi:10.1007/s11433-014-5461-x
[17] Chang Y, Xu C X, Zhang S B, et al. Quantum secure direct communication and authentication protocol with single photons. Chin Sci Bull, 2013, 58: 4571-4576 · doi:10.1007/s11434-013-6091-9
[18] Chang Y, Xu C X, Zhang S B, et al. Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Chin Sci Bull, 2014, 59: 2541-2546 · doi:10.1007/s11434-014-0339-x
[19] Lo H K, Chau H F. Is quantum bit commitment really possible? Phys Rev Lett, 1997, 78: 3410-3413 · doi:10.1103/PhysRevLett.78.3410
[20] Mayers D. Unconditionally secure quantum bit commitment is impossible. Phys Rev Lett, 1997, 78: 3414-3417 · doi:10.1103/PhysRevLett.78.3414
[21] Gao F, Fang W, Wen Q Y. Minimum best success probability by classical strategies for quantum pseudo-telepathy. Sci China-Phys Mech Astron, 2014, 57: 1244-1249 · doi:10.1007/s11433-014-5485-2
[22] Buhrman, H.; Chandran, N.; Fehr, S.; etal., Position-based quantum cryptography: impossibility and constructions, 429-446 (2011) · Zbl 1287.94060
[23] Giovannetti V, Lloyd S, Maccone L. Quantum private queries. Phys Rev Lett, 2008, 100: 230502 · Zbl 1228.81143 · doi:10.1103/PhysRevLett.100.230502
[24] Gao F, Liu B, Huang W, et al. Postprocessing of the oblivious key in quantum private query. IEEE J Sel Top Quantum Electron, 2015, 21: 6600111
[25] Liu B, Gao F, Jia H Y, et al. Efficient quantum private comparison employing single photons and collective detection. Quantum Inf Process, 2013, 12: 887-897 · Zbl 1264.81142 · doi:10.1007/s11128-012-0439-y
[26] Huang W, Wen Q Y, Liu B, et al. Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci China-Phys Mech Astron, 2013, 56: 1670-1678 · doi:10.1007/s11433-013-5224-0
[27] Liu Y M. Virtual-photon-induced entanglement with two nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity. Sci China-Phys Mech Astron, 2013, 56: 2138-2142 · doi:10.1007/s11433-013-5309-9
[28] Shi X, Wei L F, Oh C H. Quantum computation with surface-state electrons by rapid population passages. Sci China-Phys Mech Astron, 2014, 57: 1718-1724 · doi:10.1007/s11433-014-5547-5
[29] Ye T Y. Information leakage resistant quantum dialogue against collective noise. Sci China-Phys Mech Astron, 2014, 57: 2266-2275 · doi:10.1007/s11433-014-5566-2
[30] Xu S J, Chen X B, Niu X X, et al. High-efficiency quantum steganography based on the tensor product of Bell states. Sci China-Phys Mech Astron, 2013, 56: 1745-1754 · doi:10.1007/s11433-013-5151-0
[31] Wang M M, Chen X B, Yang Y X. A blind quantum signature protocol using the GHZ states. Sci China-Phys Mech Astron, 2013, 56: 1636-1641 · doi:10.1007/s11433-013-5170-x
[32] Shi J J, Shi R H, Guo Y, et al. Batch proxy quantum blind signature scheme. Sci China-Phys Mech Astron, 2013, 56: 052115 · Zbl 1488.94094
[33] Lo H K, Chau H F. Unconditional security of quantum key distribution over arbitrarily long distances. Science, 1999, 283: 2050-2056 · doi:10.1126/science.283.5410.2050
[34] Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol. Phys Rev Lett, 2000, 85: 441-444 · doi:10.1103/PhysRevLett.85.441
[35] Zhou N, Zeng G, Xiong J. Quantum key agreement protocol. Electron Lett, 2004, 40: 1149-1150 · doi:10.1049/el:20045183
[36] Chong S K, Tsai C W, Hwang T. Improvement on “quantum key agreement protocol with maximally entangled states”. Int J Theor Phys, 2011, 50: 1793-1802 · Zbl 1225.81045 · doi:10.1007/s10773-011-0691-4
[37] Xu G B, Wen Q Y, Gao F, et al. Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf Process, 2014, 13: 2587-2594 · Zbl 1305.81073 · doi:10.1007/s11128-014-0816-9
[38] Chernoff H. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann Math Stat, 1952, 23: 493-507 · Zbl 0048.11804 · doi:10.1214/aoms/1177729330
[39] Mitchell C J, Ward M, Wilson P. Key control in key agreement protocols. Electron Lett, 1998, 34: 980-981 · doi:10.1049/el:19980686
[40] Ateniese G, Steiner M, Tsudik G. New multiparty authentication services and key agreement protocols. IEEE J Sel Areas Commun, 2000, 18: 628-639 · doi:10.1109/49.839937
[41] Chong S K, Hwang T. Quantum key agreement protocol based on BB84. Opt Commun, 2010, 283: 1192-1195 · doi:10.1016/j.optcom.2009.11.007
[42] Liu B, Gao F, Wen Q Y. Single-photon multiparty quantum cryptographic protocols with collective detection. IEEE J Quantum Electron, 2011, 47: 1383-1390 · doi:10.1109/JQE.2011.2167743
[43] Lin S, Wen Q Y, Qin S J, et al. Multiparty quantum secret sharing with collective eavesdropping-check. Opt Commun, 2009, 282: 4455-4459 · doi:10.1016/j.optcom.2009.07.053
[44] Yang Y G, Chai H P, Wang Y, et al. Fault tolerant quantum secret sharing against collective-amplitude-damping noise. Sci China-Phys Mech Astron, 2011, 54: 1619-1624 · doi:10.1007/s11433-011-4432-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.