×

On the coefficients of the polynomial in the number field sieve. (English) Zbl 1497.94130

MSC:

94A60 Cryptography
Full Text: DOI

References:

[1] Buhler, J. P.; Lenstra, H. W J.; Pomerance, C.; Lenstra, A. K (ed.); Lenstra, H. W (ed.), Factoring integers with the number field sieve, 50-94 (1993), Berlin · Zbl 0806.11067 · doi:10.1007/BFb0091539
[2] Pomerance, C., The number field sieve, 465-480 (1994) · Zbl 0821.11064
[3] Montgomery, P. L., A block Lanczos algorithm for finding dependencies over GF(2), 106-120 (1995) · Zbl 0973.11520
[4] Coppersmith D. Solving homogeneous linear equations over GF(2) via block Wiedemann algorithm. Math Comput, 1994, 62: 333-350 · Zbl 0805.65046
[5] Nguyen, P., A montgomery-like square root for the number field sieve, 151-168 (1998) · Zbl 0983.11075 · doi:10.1007/BFb0054859
[6] Murthy, B., Polynomial selection for the number field sieve integer factorisation algorithm (1999), Canberra
[7] Kleinjung T. On polynomial selection for the general number field sieve. Math Comput, 2006, 75: 2037-2047 · Zbl 1183.11079 · doi:10.1090/S0025-5718-06-01870-9
[8] Kleinjung, T., Polynomial selection (2008)
[9] Koo N, Jo G H, Kwon S. On nonlinear polynomial selection and geometric progression (mod N) for number field sieve. http://eprint.iacr.org/2011/292
[10] Prest T, Zimmermann P. Non-linear polynomial selection for the number field sieve. J Symb Comput, 2012, 47: 401-409 · Zbl 1278.11107 · doi:10.1016/j.jsc.2011.09.004
[11] Williams, R. S., Cubic polynomials in the number field sieve (2010), Texas
[12] Coxon, N. V., On the number field sieve: polynomial selection and smooth elements in number fields (2012), Queensland
[13] Zhang H G, Feng X T, Qin Z P, et al. Research on evolutionary cryptosystems and evolutionary DES (in Chinese). Chin J Comput, 2003, 26: 1678-1684
[14] Meng Q S, Zhang H G, Wang Z Y, et al. Designing bent functions using evolving method. Acta Electron Sin, 2004, 32: 1901-1903
[15] Yang M, Meng Q S, Zhang H G. Evolutionary design of trace form bent functions in cryptography. Int J Inf Comput Secur, 2009, 3: 47-59 · Zbl 1177.94077
[16] Zhang H G, Li C L, Tang M. Evolutionary cryptography against multidimensional linear cryptanalysis. Sci China Inf Sci, 2011, 54: 2565-2577 · Zbl 1267.94109 · doi:10.1007/s11432-011-4494-2
[17] Zhang H G, Li C L, Tang M. Capability of evolutionary cryptosystem against differentil cryptanalysis. Sci China Inf Sci, 2011, 54: 1991-2000 · Zbl 1267.94108 · doi:10.1007/s11432-011-4430-5
[18] Elkenbracht-Huizing M. An implementation of the number field sieve. Exp Math, 1996, 5: 231-251 · Zbl 0869.11101 · doi:10.1080/10586458.1996.10504590
[19] Gower, J. E., Rotations and translations of number field sieve polynomials, 302-310 (2003) · Zbl 1205.11134
[20] Bai S, Richard B, Emmanuel T. Root optimization of polynomials in the number field sieve. Math Comp, 2015, 84: 2447-2457 · Zbl 1378.11104 · doi:10.1090/S0025-5718-2015-02926-3
[21] Yang L, Hou X R, Zeng Z B. A complete discrimination system for polynomials. Sci China Ser E-Tech Sci, 1996, 39: 625-646 · Zbl 0866.68104
[22] Yang L. Recent advances on determining the number of real roots of parametric polynomials. J Symb Comput, 1999, 28: 225-242 · Zbl 0957.65041 · doi:10.1006/jsco.1998.0274
[23] Yang M, Meng Q S, Wang Z Y, et al. Polynomial selection for the number field sieve in a geometric view. http://eprint.iacr.org/2013/583
[24] Lenstra A K, Lenstra H W Jr, Lovász L. Factoring polynomials with rational coefficients. Math Ann, 1982, 261: 515-534 · Zbl 0488.12001 · doi:10.1007/BF01457454
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.