×

Cryptanalysis of prime power RSA with two private exponents. (English) Zbl 1497.94133


MSC:

94A60 Cryptography
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Rivest R L, Shamir A, Adleman L. A method for obtaining digital signatures and public-key cryptosystems. Commun ACM, 1978, 21: 120-126 · Zbl 0368.94005 · doi:10.1145/359340.359342
[2] Coppersmith, D., Finding a small root of a univariate modular equation, 155-165 (1996) · Zbl 1304.94042
[3] Coppersmith D. Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J Cryptol, 1997, 10: 233-260 · Zbl 0912.11056 · doi:10.1007/s001459900030
[4] Howgrave-Graham, N.; Darnell, M. (ed.), Finding small roots of univariate modular equations revisited, 131-142 (1997), Berlin · Zbl 0922.11113 · doi:10.1007/BFb0024458
[5] Wiener M J. Cryptanalysis of short RSA secret exponents. IEEE Trans Inform Theory, 1990, 36: 553-558 · Zbl 0703.94004 · doi:10.1109/18.54902
[6] Boneh, D.; Durfee, G., Cryptanalysis of RSA with private key d less than N0.292, 1-11 (1999) · Zbl 0948.94009
[7] Boneh D, Durfee G. Cryptanalysis of RSA with private key d less than N0.292. IEEE Trans Inform Theory, 2000, 46: 1339-1349 · Zbl 1001.94031 · doi:10.1109/18.850673
[8] Blömer, J.; May, A.; Silverman, J. H (ed.), Low secret exponent RSA revisited, 4-19 (2001), Berlin · Zbl 1006.11082 · doi:10.1007/3-540-44670-2_2
[9] Blömer, J.; May, A., New partial key exposure attacks on RSA, 27-43 (2003) · Zbl 1122.94353
[10] Ernst, M.; Jochemsz, E.; May, A.; etal., Partial key exposure attacks on RSA up to full size exponents, 371-386 (2005) · Zbl 1137.94343
[11] Aono, Y., A new lattice construction for partial key exposure attack for RSA, 34-53 (2009) · Zbl 1220.94032
[12] Sarkar, S., Partial key exposure: generalized framework to attack RSA, 76-92 (2011) · Zbl 1291.94149
[13] Joye, M.; Lepoint, T.; Ryan, M. D (ed.); Smyth, B. (ed.); Wang, G. L (ed.), Partial key exposure on RSA with private exponents larger than N, 369-380 (2012), Berlin · Zbl 1291.94108 · doi:10.1007/978-3-642-29101-2_25
[14] Takagi, T., Fast RSA-type cryptosystem modulo pkq, 318-326 (1998) · Zbl 0931.94041
[15] Boneh, D.; Durfee, G.; Howgrave-Graham, N., Factoring N = prq for large r, 326-337 (1999) · Zbl 1007.11077
[16] May, A., Secret exponent attacks on RSA-type schemes with moduli N = prq, 218-230 (2004) · Zbl 1198.94113
[17] Sarkar S. Small secret exponent attack on RSA variant with modulus N = prq. Designs Codes Cryptogr, 2014, 73: 383-392 · Zbl 1335.94076 · doi:10.1007/s10623-014-9928-6
[18] Itoh, K.; Kunihiro, N.; Kurosawa, K., Small secret key attack on a variant of RSA (due to Takagi), 387-406 (2008) · Zbl 1161.94408
[19] Takayasu, A.; Kunihiro, N., Better lattice constructions for solving multivariate linear equations modulo unknown divisors, 118-135 (2013) · Zbl 1316.94090
[20] Lenstra A K, Lenstra H W, Lovász L. Factoring polynomials with rational coefficients. Math Ann, 1982, 261: 515-534 · Zbl 0488.12001 · doi:10.1007/BF01457454
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.