×

Nonradiality of second eigenfunctions of the fractional Laplacian in a ball. (English) Zbl 1498.35018

Summary: Using symmetrization techniques, we show that, for every \(N\geq 2\), any second eigenfunction of the fractional Laplacian in the \(N\)-dimensional unit ball with homogeneous Dirichlet conditions is nonradial, and hence its nodal set is an equatorial section of the ball.

MSC:

35B06 Symmetries, invariants, etc. in context of PDEs
35J25 Boundary value problems for second-order elliptic equations
35P05 General topics in linear spectral theory for PDEs
35R11 Fractional partial differential equations
47A75 Eigenvalue problems for linear operators

References:

[1] Anoop, T. V., On the structure of the second eigenfunctions of the \(p\)-Laplacian on a ball, Proc. Amer. Math. Soc., 2503-2512 (2016) · Zbl 1386.35288 · doi:10.1090/proc/12902
[2] S. Axler, P. Bourdon, and R. Wade, Harmonic function theory, vol. 137, Springer Science & Business Media, 2013. · Zbl 0765.31001
[3] Ba\~{n}uelos, Rodrigo, The Cauchy process and the Steklov problem, J. Funct. Anal., 355-423 (2004) · Zbl 1055.60072 · doi:10.1016/j.jfa.2004.02.005
[4] Beckner, William, Sobolev inequalities, the Poisson semigroup, and analysis on the sphere \(S^n\), Proc. Nat. Acad. Sci. U.S.A., 4816-4819 (1992) · Zbl 0766.46012 · doi:10.1073/pnas.89.11.4816
[5] Benedikt, Ji\v{r}\'{\i }, The second eigenfunction of the \(p\)-Laplacian on the disk is not radial, Nonlinear Anal., 4422-4435 (2012) · Zbl 1251.35057 · doi:10.1016/j.na.2011.06.012
[6] Biccari, Umberto, The Poisson equation from non-local to local, Electron. J. Differential Equations, Paper No. 145, 13 pp. (2018) · Zbl 1396.35066
[7] Bobkov, Vladimir, On a property of the nodal set of least energy sign-changing solutions for quasilinear elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A, 1163-1173 (2019) · Zbl 1429.35103 · doi:10.1017/prm.2018.88
[8] Brasco, Lorenzo, The second eigenvalue of the fractional \(p\)-Laplacian, Adv. Calc. Var., 323-355 (2016) · Zbl 1349.35263 · doi:10.1515/acv-2015-0007
[9] Brock, Friedemann, An approach to symmetrization via polarization, Trans. Amer. Math. Soc., 1759-1796 (2000) · Zbl 0965.49001 · doi:10.1090/S0002-9947-99-02558-1
[10] Di Nezza, Eleonora, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[11] Dyda, Bart\l omiej, Eigenvalues of the fractional Laplace operator in the unit ball, J. Lond. Math. Soc. (2), 500-518 (2017) · Zbl 1387.35431 · doi:10.1112/jlms.12024
[12] Fall, Mouhamed Moustapha, Morse index versus radial symmetry for fractional Dirichlet problems, Adv. Math., Paper No. 107728, 22 pp. (2021) · Zbl 1476.35306 · doi:10.1016/j.aim.2021.107728
[13] Ferreira, Rui A. C., Anti-symmetry of the second eigenfunction of the fractional Laplace operator in a 3-D ball, NoDEA Nonlinear Differential Equations Appl., Paper No. 6, 8 pp. (2019) · Zbl 1506.35264 · doi:10.1007/s00030-019-0554-x
[14] Frank, Rupert L., Recent developments in nonlocal theory. Eigenvalue bounds for the fractional Laplacian: a review, 210-235 (2018), De Gruyter, Berlin · Zbl 1404.35303 · doi:10.1515/9783110571561-007
[15] Garofalo, Nicola, New developments in the analysis of nonlocal operators. Fractional thoughts, Contemp. Math., 1-135 ([2019] ©2019), Amer. Math. Soc., [Providence], RI · Zbl 1423.35397 · doi:10.1090/conm/723/14569
[16] Lindgren, Erik, Fractional eigenvalues, Calc. Var. Partial Differential Equations, 795-826 (2014) · Zbl 1292.35193 · doi:10.1007/s00526-013-0600-1
[17] Ros-Oton, Xavier, Fractional Laplacian: Pohozaev identity and nonexistence results, C. R. Math. Acad. Sci. Paris, 505-508 (2012) · Zbl 1273.35301 · doi:10.1016/j.crma.2012.05.011
[18] Ros-Oton, Xavier, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl. (9), 275-302 (2014) · Zbl 1285.35020 · doi:10.1016/j.matpur.2013.06.003
[19] Servadei, Raffaella, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 2105-2137 (2013) · Zbl 1303.35121 · doi:10.3934/dcds.2013.33.2105
[20] Servadei, Raffaella, A Brezis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal., 2445-2464 (2013) · Zbl 1302.35413 · doi:10.3934/cpaa.2013.12.2445
[21] C. L. Siegel (1929), Uber einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss., Phys.-math. Kl., Reprinted in Gesammelte Abhandlungen I, Berlin-Heidelberg-New York: Springer-Verlag, 1966. · JFM 56.0180.05
[22] Stinga, Pablo Ra\'{u}l, Extension problem and Harnack’s inequality for some fractional operators, Comm. Partial Differential Equations, 2092-2122 (2010) · Zbl 1209.26013 · doi:10.1080/03605301003735680
[23] Watson, G. N., A Treatise on the Theory of Bessel Functions, vi+804 pp. (1944), Cambridge University Press, Cambridge, England; The Macmillan Company, New York · Zbl 0849.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.