×

Integrative statistical methods for exposure mixtures and health. (English) Zbl 1498.62290

Summary: Humans are concurrently exposed to chemically, structurally and toxicologically diverse chemicals. A critical challenge for environmental epidemiology is to quantify the risk of adverse health outcomes resulting from exposures to such chemical mixtures and to identify which mixture constituents may be driving etiologic associations. A variety of statistical methods have been proposed to address these critical research questions. However, they generally rely solely on measured exposure and health data available within a specific study. Advancements in understanding of the role of mixtures on human health impacts may be better achieved through the utilization of external data and knowledge from multiple disciplines with innovative statistical tools. In this paper we develop new methods for health analyses that incorporate auxiliary information about the chemicals in a mixture, such as physicochemical, structural and/or toxicological data. We expect that the constituents identified using auxiliary information will be more biologically meaningful than those identified by methods that solely utilize observed correlations between measured exposure. We develop flexible Bayesian models by specifying prior distributions for the exposures and their effects that include auxiliary information and examine this idea over a spectrum of analyses from regression to factor analysis. The methods are applied to study the effects of volatile organic compounds on emergency room visits in Atlanta. We find that including cheminformatic information about the exposure variables improves prediction and provides a more interpretable model for emergency room visits for respiratory diseases.

MSC:

62P12 Applications of statistics to environmental and related topics
62F15 Bayesian inference
62H25 Factor analysis and principal components; correspondence analysis
62P10 Applications of statistics to biology and medical sciences; meta analysis

Software:

Rdkit
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Antonelli, J., Mazumdar, M., Bellinger, D., Christiani, D., Wright, R. and Coull, B. (2020). Estimating the health effects of environmental mixtures using Bayesian semiparametric regression and sparsity inducing priors. Ann. Appl. Stat. 14 257-275. · Zbl 1439.62215 · doi:10.1214/19-AOAS1307
[2] Atkinson, R. W., Mills, I. C., Walton, H. A. and Anderson, H. R. (2015). Fine particle components and health—a systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions. J. Expo. Sci. Environ. Epidemiol. 25 208-214.
[3] Billionnet, C., Sherrill, D., Annesi-Maesano, I. and GERIE study (2012). Estimating the health effects of exposure to multi-pollutant mixture. Ann. Epidemiol. 22 126-141.
[4] Bobb, J. F., Valeri, L., Claus Henn, B., Christiani, D. C., Wright, R. O., Mazumdar, M., Godleski, J. J. and Coull, B. A. (2015). Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 16 493-508.
[5] Carrico, C., Gennings, C., Wheeler, D. C. and Factor-Litvak, P. (2015). Characterization of weighted quantile sum regression for highly correlated data in a risk analysis setting. J. Agric. Biol. Environ. Stat. 20 100-120. · Zbl 1325.62208 · doi:10.1007/s13253-014-0180-3
[6] Chen, R., Yin, P., Meng, X., Liu, C., Wang, L., Xu, X., Ross, J. A., Tse, L. A., Zhao, Z. et al. (2017). Fine particulate air pollution and daily mortality. A nationwide analysis in 272 Chinese cities. Am. J. Respir. Crit. Care Med. 196 73-81.
[7] National Research Council and others (2004a). Air Quality Management in the United States. National Academies Press, Washington, DC.
[8] National Research Council and others (2004b). Research Priorities for Airborne Particulate Matter: IV. Continuing Research Progress 4. National Academies Press, Washington, DC.
[9] Dominici, F., Wang, C., Crainiceanu, C. and Parmigiani, G. (2008). Model selection and health effect estimation in environmental epidemiology. Epidemiology 19 558-560.
[10] Dominici, F., Peng, R. D., Barr, C. D. and Bell, M. L. (2010). Protecting human health from air pollution: Shifting from a single-pollutant to a multi-pollutant approach. Epidemiology 21 187.
[11] Dragon (2019). Dragon. Available at http://www.talete.mi.it/products/dragon_description.htm.
[12] Fang, X., Fang, B., Wang, C., Xia, T., Bottai, M., Fang, F. and Cao, Y. (2019). Comparison of frequentist and Bayesian generalized additive models for assessing the association between daily exposure to fine particles and respiratory mortality: A simulation study. Int. J. Environ. Res. Public Health 16 746.
[13] Filer, D. L., Kothiya, P., Setzer, R. W., Judson, R. S. and Martin, M. T. (2016). tcpl: The ToxCast pipeline for high-throughput screening data. Bioinformatics 33 618-620.
[14] Fourches, D., Muratov, E. and Tropsha, A. (2010). Trust, but verify: On the importance of chemical structure curation in cheminformatics and QSAR modeling research. J. Chem. Inf. Model. 50 1189-1204.
[15] Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 1 515-533. · Zbl 1331.62139 · doi:10.1214/06-BA117A
[16] George, E. I. and McCulloch, R. E. (1997). Approaches for Bayesian variable selection. Statist. Sinica 7 339-373. · Zbl 0884.62031
[17] Ghosh, J. and Ghattas, A. E. (2015). Bayesian variable selection under collinearity. Amer. Statist. 69 165-173. · Zbl 07671727
[18] Guha, R. (2007). Chemical informatics functionality in R. J. Stat. Softw. 18.
[19] Hansen, D. A., Edgerton, E., Hartsell, B., Jansen, J., Burge, H., Koutrakis, P., Rogers, C., Suh, H., Chow, J. et al. (2006). Air quality measurements for the aerosol research and inhalation epidemiology study. J. Air Waste Manage. Assoc. 56 1445-1458.
[20] Kwon, D., Landi, M. T., Vannucci, M., Issaq, H. J., Prieto, D. and Pfeiffer, R. M. (2011). An efficient stochastic search for Bayesian variable selection with high-dimensional correlated predictors. Comput. Statist. Data Anal. 55 2807-2818.
[21] Landrum, G. (2019). RDKit: Open-source cheminformatics. Available at http://www.rdkit.org.
[22] Li, C. and Li, H. (2010). Variable selection and regression analysis for graph-structured covariates with an application to genomics. Ann. Appl. Stat. 4 1498-1516. · Zbl 1202.62157 · doi:10.1214/10-AOAS332
[23] Li, Z., Liu, Z., Zhong, W., Huang, M., Wu, N., Xie, Y., Dai, Z. and Zou, X. (2016). Large-scale identification of human protein function using topological features of interaction network. Sci. Rep. 6 37179.
[24] MacLehose, R. F., Dunson, D. B., Herring, A. H. and Hoppin, J. A. (2015). Bayesian methods for highly correlated exposure data. Biostatistics 16 493-508.
[25] Moliter, J., Papathomas, M., Jerrett, M. and Richardson, S. (2010). Bayesian profile regression with an application to the National Survey of Children’s Health. Biostatistics 11 484-498. · Zbl 1437.62560 · doi:10.1093/biostatistics/kxq013
[26] Mortimer, K., Neugebauer, R., Lurmann, F., Alcorn, S., Balmes, J. and Tager, I. (2008). Air pollution and pulmonary function in asthmatic children: Effects of prenatal and lifetime exposures. Epidemiology 19 550-557.
[27] O’Hara, R. B. and Sillanpää, M. J. (2009). A review of Bayesian variable selection methods: What, how and which. Bayesian Anal. 4 85-117. · Zbl 1330.62291 · doi:10.1214/09-BA403
[28] Pearce, J. L., Waller, L. A., Sarnat, S. E., Chang, H. H., Klein, M., Mulholland, J. A. and Tolbert, P. E. (2016). Characterizing the spatial distribution of multiple pollutants and populations at risk in Atlanta, Georgia. Spat. Spatio-Tempor. Epidemiol. 18 13-23.
[29] Reich, B. J., Guan, Y., Fourches, D., Warren, J. L., Sarnet, S. E. and Chang, H. H. (2020). Supplement to “Integrative statistical methods for exposure mixtures and health.” https://doi.org/10.1214/20-AOAS1364SUPP
[30] Sabanés Bové, D., Held, L. and Kauermann, G. (2015). Objective Bayesian model selection in generalized additive models with penalized splines. J. Comput. Graph. Statist. 24 394-415.
[31] Shah, A. S. V., Lee, K. K., McAllister, D. A., Hunter, A., Nair, H., Whiteley, W., Langrish, J. P., Newby, D. E. and Mills, N. L. (2015). Short term exposure to air pollution and stroke: Systematic review and meta-analysis. BMJ 350 h1295.
[32] Sinisi, S. E. and van der Laan, M. J. (2004). Deletion/substitution/addition algorithm in learning with applications in genomics. Stat. Appl. Genet. Mol. Biol. 3 18. · Zbl 1166.62368 · doi:10.2202/1544-6115.1069
[33] Stieb, D. M., Chen, L., Eshoul, M. and Judek, S. (2012). Ambient air pollution, birth weight and preterm birth: A systematic review and meta-analysis. Environ. Res. 117 100-111.
[34] Strickland, M. J., Darrow, L. A., Klein, M., Flanders, W. D., Sarnat, J. A., Waller, L. A., Sarnat, S. E., Mulholland, J. A. and Tolbert, P. E. (2010). Short-term associations between ambient air pollutants and pediatric asthma emergency department visits. Am. J. Respir. Crit. Care Med. 2010 307-316.
[35] Suh, H. H., Zanobetti, A., Schwartz, J. and Coull, B. A. (2011). Chemical properties of air pollutants and cause-specific hospital admissions among the elderly in Atlanta, Georgia. Environ. Health Perspect. 119 1421-1428.
[36] Sun, Z., Tao, Y., Li, S., Ferguson, K. K., Meeker, J. D., Park, S. K., Batterman, S. A. and Mukherjee, B. (2013). Statistical strategies for constructing health risk models with multiple pollutants and their interactions: Possible choices and comparisons. Environ. Health 12 85.
[37] Vrijheid, M., Martinez, D., Manzanares, S., Dadvand, P., Schembari, A., Rankin, J. and Nieuwenhuijsen, M. (2011). Ambient air pollution and risk of congenital anomalies: A systematic review and meta-analysis. Environ. Health Perspect. 119 598-606.
[38] Wei, R., Reich, B. J., Hoppin, J. A. and Ghosal, S. (2020). Sparse Bayesian additive nonparametric regression with application to health effects of pesticides mixtures. Statist. Sinica 30 55-79. · Zbl 1444.62055
[39] Ye, D., Klein, M., Chang, H. H., Sarnat, J. A., Mulholland, J. A., Edgerton, E. S., Winquist, A., Tolbert, P. E. and Sarnat, S. E. (2017). Estimating acute cardiorespiratory effects of ambient volatile organic compounds. Epidemiology 28 197-206.
[40] Ye, D., Klein, M., Mulholland, J. A., Russell, A. G., Weber, R., Edgerton, E. S., Chang, H. H., Sarnat, J. A., Tolbert, P. E. et al. (2018). Estimating acute cardiovascular effects of ambient PM. Environ. Health Perspect. 126 027007.
[41] Zheng, X., Ding, H., Jiang, L., Chen, S., Zheng, J., Qiu, M., Zhou, Y., Chen, Q. and Guan, W. (2015). Association between air pollutants and asthma emergency room visits and hospital admissions in time series studies: A systematic review and meta-analysis. PLoS ONE 10 e0138146
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.