×

Bézier base extended isogeometric numerical method for thermo elastic-plastic analysis of crack propagation in cracked plate under welding residual stress and thermal load. (English) Zbl 1498.74075

Summary: A new procedure in the field of Bézier base extended isogeometric method (XIGA) has been introduced to analyze the effect of welding residual stress and thermal load on crack propagation rate and fatigue life. This new procedure is based on the constitutive thermoelastic plastic equation. The main parts of this procedure are using the Bézier base XIGA method to calculate the redistribution of welding residual stress due to crack growth and to compute the value of stress intensity factor (SIF) in the welding residual stress field. For this purpose, the grid points of Bézier elements (with \(C^0\)-continuity) around the crack line and the crack tip are identified by the level set representation. Then, discontinuous enrichment functions are added to the isogeometric analysis approximation. Thus, this method does not require the re-meshing process. The results show that there is a good agreement between the results of proposed numerical method and the Hole-Drilling Strain-Gage method. The interaction integral method has been used to extract SIF. The effects of welding residual stress and thermal load on the SIF are considered using the superposition method. Also, the Walker equation has been modified to calculate the fatigue life caused by thermal loading and welding residual stress. The results display a good agreement between the proposed method and the finite element method. Due to the advantages of the Bézier based XIGA method, which eliminates parametric space and allows the precise addition of enrichment functions to the basis functions of cracked elements (crack line or crack tip), the obtained results are highly accurate that shows this method is effective for analyzing discontinuous problems.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74R10 Brittle fracture
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
74R05 Brittle damage
74R20 Anelastic fracture and damage

Software:

BEAN
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] References [1] Standard test method for determining residual stresses by the hole-drilling strain-gage method. ASTM E837 standard-13a, 2013. https://doi.org/10.1520/E0837-20. · doi:10.1520/E0837-20
[2] D.J. Benson, Y. Bazilevs, M.-C. Hsu and T.J.R. Hughes. A large deformation, rotation-free, isogeometric shell. Computer Methods in Applied Mechanics and Engineering, 200(13):1367-1378, 2011. https://doi.org/10.1016/j.cma.2010.12.003. · Zbl 1228.74077 · doi:10.1016/j.cma.2010.12.003
[3] G. Bhardwaj, I.V. Singh and B.K. Mishra. Fatigue crack growth in functionally graded material using homogenized XIGA. Composite Structures, 134:269-284, 2015. https://doi.org/10.1016/j.compstruct.2015.08.065. · doi:10.1016/j.compstruct.2015.08.065
[4] D. Bremberg and J. Faleskog. A numerical procedure for inter-action integrals developed for curved cracks of general shape in 3-D. International Journal of Solids and Structures, 62:144-157, 2015. https://doi.org/10.1016/j.ijsolstr.2015.02.022. · doi:10.1016/j.ijsolstr.2015.02.022
[5] B. Brickstad and B.L. Josefson. A parametric study of residual stresses in multi-pass butt-welded stainless steel pipes. International Journal of pressure Vessels and piping, 75(1):11-25,1998. https://doi.org/10.1016/S0308-0161(97)00117-8. · doi:10.1016/S0308-0161(97)00117-8
[6] R. Cimrman, M. Novák, R. Kolman, M. Tuma, J. Plešek and J. Vackář. Con-vergence study of isogeometric analysis based on bézier extraction in electronic structure calculations. Applied Mathematics and Computation, 319:138-152, 2018. https://doi.org/10.1016/j.amc.2017.02.023. · Zbl 1426.78032 · doi:10.1016/j.amc.2017.02.023
[7] A. de Klerk, A.G. Visser and A.A. Groenwold. Lower and upper bound esti-mation of isotropic and orthotropic fracture mechanics problems using elements with rotational degrees of freedom. Communications in Numerical Methods in Engineering, 24(5):335-353, 2008. https://doi.org/10.1002/cnm.973. · Zbl 1138.74051 · doi:10.1002/cnm.973
[8] H. Dehestani, Y. Ordokhani and M. Razzaghi. Numerical solution of variable-order time fractional weakly singular partial integro-differential equations with error estimation. Mathematical Modelling and Analysis, 25(4):680-701, 2020. https://doi.org/10.3846/mma.2020.11692. · Zbl 1524.65645 · doi:10.3846/mma.2020.11692
[9] D. Deng and H. Murakawa. Numerical simulation of temperature field and resid-ual stress in multi-pass welds in stainless steel pipe and comparison with exper-imental measurements. Computational materials science, 37(3):269-277, 2006. https://doi.org/10.1016/j.commatsci.2005.07.007. · doi:10.1016/j.commatsci.2005.07.007
[10] G. Glinka. Effect of residual stresses on fatigue crack growth in steel weldments under constant and variable amplitude loads. In Fracture Mechanics: Proceedings of the Eleventh National Symposium on Fracture Mechanics: Part I. ASTM International, 1979. https://doi.org/10.1520/STP34914S. · doi:10.1520/STP34914S
[11] J. Huang, N. Nguyen-Thanh, W. Li and K. Zhou. An adaptive isogeometric-meshfree coupling approach for the limit analysis of cracked structures. Theoretical and Applied Fracture Mechanics, 106:102426, 2020. https://doi.org/10.1016/j.tafmec.2019.102426. · doi:10.1016/j.tafmec.2019.102426
[12] X. Huang, Y. Liu and X. Huang. Analytical characterizations of crack tip plastic zone size for central-cracked unstiffened and stiffened plates under biaxial loading. Engineering Fracture Mechanics, 206:1-20, 2019. https://doi.org/10.1016/j.engfracmech.2018.11.047. · doi:10.1016/j.engfracmech.2018.11.047
[13] T.J.R. Hughes, J.A. Cottrell and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer methods in applied mechanics and engineering, 194(39):4135-4195, 2005. https://doi.org/10.1016/j.cma.2004.10.008. · Zbl 1151.74419 · doi:10.1016/j.cma.2004.10.008
[14] A. Jameel and G.A. Harmain. A coupled FE-IGA technique for modeling fatigue crack growth in engineering materials. Mechan-ics of Advanced Materials and Structures, 26(21):1764-1775, 2019. https://doi.org/10.1080/15376494.2018.1446571. · doi:10.1080/15376494.2018.1446571
[15] A. Jameel and G.A. Harmain. Extended iso-geometric analysis for modeling three-dimensional cracks. Mechanics of Advanced Materials and Structures, 26(11):915-923, 2019. https://doi.org/10.1080/15376494.2018.1430275. · doi:10.1080/15376494.2018.1430275
[16] A. Jameel and G.A. Harmain. Fatigue crack growth analysis of cracked specimens by the coupled finite element-element free Galerkin method. Mechanics of Advanced Materials and Structures, 26(16):1343-1356, 2019. https://doi.org/10.1080/15376494.2018.1432800. · doi:10.1080/15376494.2018.1432800
[17] A. Jameel and G.A. Harmain. Large deformation in bi-material components by XIGA and coupled FE-IGA techniques. Mechan-ics of Advanced Materials and Structures, 29(6):850-872, 2022. https://doi.org/10.1080/15376494.2020.1799120. · doi:10.1080/15376494.2020.1799120
[18] B. Karaman. On the numerical simulation of time-space fractional coupled non-linear schrödinger equations utilizing wendland’s compactly supported function collocation method. Mathematical Modelling and Analysis, 26(1):94-115, 2021. https://doi.org/10.3846/mma.2021.12262. · Zbl 1476.65269 · doi:10.3846/mma.2021.12262
[19] M. Kern, A. Taakili and M.M. Zarrouk. Preconditioned iterative method for reactive transport with sorption in porous media. Mathematical Modelling and Analysis, 25(4):546-568, 2020. https://doi.org/10.3846/mma.2020.10626. · Zbl 1524.65557 · doi:10.3846/mma.2020.10626
[20] W. Li, N. Nguyen-Thanh, J. Huang and K. Zhou. Adaptive analysis of crack propagation in thin-shell structures via an isogeometric-meshfree moving least-squares approach. Computer Methods in Applied Mechanics and Engineering, 358:112613, 2020. https://doi.org/10.1016/j.cma.2019.112613. · Zbl 1441.74210 · doi:10.1016/j.cma.2019.112613
[21] A.M. Malik, E.M. Qureshi, N.U. Dar and I. Khan. Analysis of cir-cumferentially arc welded thin-walled cylinders to investigate the resid-ual stress fields. Thin-Walled Structures, 46(12):1391-1401, 2008. https://doi.org/10.1016/j.tws.2008.03.011. · doi:10.1016/j.tws.2008.03.011
[22] A. Moarrefzadeh, S. Shahrooi and M.J. Azizpour. Predicting fatigue crack propagation in residual stress field due to welding by meshless local Petrov-Galerkin method. Journal of Manufacturing Processes, 45:379-391, 2019. https://doi.org/10.1016/j.jmapro.2019.07.019. · doi:10.1016/j.jmapro.2019.07.019
[23] S. Murugan, S.K. Rai, P.V. Kumar, T. Jayakumar, B. Raj and M.S.C Bose. Tem-perature distribution and residual stresses due to multipass welding in type 304 stainless steel and low carbon steel weld pads. International Journal of Pres-sure vessels and piping, 78(4):307-317, 2001. https://doi.org/10.1016/S0308-0161(01)00047-3. · doi:10.1016/S0308-0161(01)00047-3
[24] L.B. Nguyen, C.H. Thai, A.M. Zenkour and H. Nguyen-Xuan. An isogeometric Bézier finite element method for vibration analysis of functionally graded piezo-electric material porous plates. International Journal of Mechanical Sciences, 157-158:165-183, 2019. https://doi.org/10.1016/j.ijmecsci.2019.04.017. · doi:10.1016/j.ijmecsci.2019.04.017
[25] N. Nguyen-Thanh, J. Huang and K. Zhou. An isogeometric-meshfree coupling approach for analysis of cracks. International Journal for Numerical Methods in Engineering, 113(10):1630-1651, 2018. https://doi.org/10.1002/nme.5713. · doi:10.1002/nme.5713
[26] N. Nguyen-Thanh, N. Valizadeh, M.N. Nguyen, H. Nguyen-Xuan, X. Zhuang, P. Areias, G. Zi, Y. Bazilevs, L. De Lorenzis and T. Rabczuk. An ex-tended isogeometric thin shell analysis based on Kirchhoff-Love theory. Com-puter Methods in Applied Mechanics and Engineering, 284:265-291, 2015. https://doi.org/10.1016/j.cma.2014.08.025. · Zbl 1423.74811 · doi:10.1016/j.cma.2014.08.025
[27] L. Piegl and W. Tiller. The NURBS book. Springer Science & Business Media, 2012. https://doi.org/10.1007/978-3-642-97385-7. · doi:10.1007/978-3-642-97385-7
[28] M. Ratas, A. Salupere and J. Majak. Solving nonlinear PDEs us-ing the higher order Haar wavelet method on nonuniform and adap-tive grids. Mathematical Modelling and Analysis, 26(1):147-169, 2021. https://doi.org/10.3846/mma.2021.12920. · Zbl 1492.65282 · doi:10.3846/mma.2021.12920
[29] A.H.S. Shayegan, A. Zakeri and S.M. Hosseini. A numerical method for solving two-dimensional nonlinear parabolic problems based on a precondi-tioning operator. Mathematical Modelling and Analysis, 25(4):531-545, 2020. https://doi.org/10.3846/mma.2020.4310. · Zbl 1523.65083 · doi:10.3846/mma.2020.4310
[30] J. Shi, D. Chopp, J. Lua, N. Sukumar and T. Belytschko. Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life pre-dictions. Engineering Fracture Mechanics, 77(14):2840-2863, 2010. https://doi.org/10.1016/j.engfracmech.2010.06.009. · doi:10.1016/j.engfracmech.2010.06.009
[31] A.K. Singh, A. Jameel and G.A. Harmain. Investigations on crack tip plastic zones by the extended iso-geometric analysis. Materials Today: Proceedings, 5(9):19284-19293, 2018. https://doi.org/10.1016/j.matpr.2018.06.287. · doi:10.1016/j.matpr.2018.06.287
[32] J. Sladek, P. Stanak, Z.D. Han, V. Sladek and S.N. Atluri. Applications of the MLPG method in engineering & sciences: a review. CMES: Computer Modeling in Engineering & Sciences, 92(5):423-475, 2013.
[33] M.Španiel, J. Jurenka and J. Kuželka. Verification of FE model of fatigue crack propagation under mixed mode conditions. Meccanica, 44(2):189-195, 2009. https://doi.org/10.1007/s11012-008-9164-0. · Zbl 1254.74098 · doi:10.1007/s11012-008-9164-0
[34] G.F. Sun, Z.D. Wang, Y. Lu, R. Zhou, Z.H. Ni, X. Gu and Z.G. Wang. Nu-merical and experimental investigation of thermal field and residual stress in laser-mig hybrid welded NV E690 steel plates. Journal of Manufacturing Pro-cesses, 34:106-120, 2018. https://doi.org/10.1016/j.jmapro.2018.05.023. · doi:10.1016/j.jmapro.2018.05.023
[35] A. Sutradhar and G.H. Paulino. Symmetric Galerkin boundary element com-putation of T-stress and stress intensity factors for mixed-mode cracks by the interaction integral method. Engineering Analysis with Boundary Elements, 28(11):1335-1350, 2004. https://doi.org/10.1016/j.enganabound.2004.02.009. · Zbl 1158.74517 · doi:10.1016/j.enganabound.2004.02.009
[36] L.V. Tran, A.J.M. Ferreira and H. Nguyen-Xuan. Isogeometric anal-ysis of functionally graded plates using higher-order shear deforma-tion theory. Composites Part B: Engineering, 51:368-383, 2013. https://doi.org/10.1016/j.compositesb.2013.02.045. · doi:10.1016/j.compositesb.2013.02.045
[37] R. Vaghefi, M.R. Hematiyan, A. Nayebi and A. Khosravifard. A para-metric study of the MLPG method for thermo-mechanical solidification analysis. Engineering Analysis with Boundary Elements, 89:10-24, 2018. https://doi.org/10.1016/j.enganabound.2018.01.006. · Zbl 1403.80013 · doi:10.1016/j.enganabound.2018.01.006
[38] W. Wen, S. Luo, S. Duan, J. Liang and D. Fang. Improved quadratic isogeomet-ric element simulation of one-dimensional elastic wave propagation with central difference method. Applied Mathematics and Mechanics, 39(5):703-716, 2018. https://doi.org/10.1007/s10483-018-2330-6. · Zbl 1392.74091 · doi:10.1007/s10483-018-2330-6
[39] B. Yahiaoui and P. Petrequin.Étude de la propagation de fissures par fatigue dans des aciers inoxydables austénitiquesà bas carbone du type 304l et 316l. Revue de Physique Appliquée, 9(4):683-690, 1974. https://doi.org/10.1051/rphysap:0197400904068300. · doi:10.1051/rphysap:0197400904068300
[40] S. Yin, T. Yu, T.Q. Bui, X. Zheng and S. Gu. Static and dy-namic fracture analysis in elastic solids using a multiscale extended iso-geometric analysis. Engineering Fracture Mechanics, 207:109-130, 2019. https://doi.org/10.1016/j.engfracmech.2018.12.024. · doi:10.1016/j.engfracmech.2018.12.024
[41] H. Yuan, W.J. Liu and Y.J. Xie. Mode-I stress intensity factors for cracked special-shaped shells under bending. Engineering Fracture Mechanics, 207:131-148, 2019. https://doi.org/10.1016/j.engfracmech.2018.12.026. · doi:10.1016/j.engfracmech.2018.12.026
[42] M. Zubairuddin, S.K. Albert, M. Vasudevan, S. Mahadevan, V. Chaud-hari and V.K. Suri. Numerical simulation of multi-pass GTA welding of grade 91 steel. Journal of Manufacturing Processes, 27:87-97, 2017. https://doi.org/10.1016/j.jmapro.2017.04.031. · doi:10.1016/j.jmapro.2017.04.031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.