Kang, Shin Min; Farid, Ghulam; Nazeer, Waqas; Mehmood, Sajid \((h-m)\)-convex functions and associated fractional Hadamard and Fejér-Hadamard inequalities via an extended generalized Mittag-Leffler function. (English) Zbl 1499.26128 J. Inequal. Appl. 2019, Paper No. 78, 10 p. (2019). Summary: The aim of this paper is to present the Hadamard and the Fejér-Hadamard integral inequalities for \((h-m)\)-convex functions due to an extended generalized Mittag-Leffler function. These results contain several fractional integral inequalities for the well-known fractional integral operators. Also results for the generalized Mittag-Leffler function are mentioned. Cited in 17 Documents MSC: 26D15 Inequalities for sums, series and integrals 26B25 Convexity of real functions of several variables, generalizations 26A33 Fractional derivatives and integrals 26A51 Convexity of real functions in one variable, generalizations 33E12 Mittag-Leffler functions and generalizations Keywords:Riemann-Liouville fractional integrals; Mittag-Leffler function; fractional integrals; \((h-m)\)-convex functions × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Andrić, M., Farid, G., Pečarić, J.: A further extension of Mittag-Leffler function. Fract. Calc. Appl. Anal. 21(5), 1377-1395 (2018) · Zbl 1426.33051 · doi:10.1515/fca-2018-0072 [2] Baleanu, D., Fernandez, A.: On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun. Nonlinear Sci. Numer. Simul. 59, 444-462 (2018) · Zbl 1510.34004 · doi:10.1016/j.cnsns.2017.12.003 [3] Chen, F.: On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity. Chin. J. Math. 2014, 7 (2014) · Zbl 1298.26020 [4] Chen, H., Katugampola, U.N.: Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 446, 1274-1291 (2017) · Zbl 1351.26011 · doi:10.1016/j.jmaa.2016.09.018 [5] Farid, G.: Hadamard and Fejér-Hadamard inequalities for generalized fractional integral involving special functions. Konuralp J. Math. 4(1), 108-113 (2016) · Zbl 1355.26026 [6] Farid, G.: A treatment of the Hadamard inequality due to m-convexity via generalized fractional integral. J. Fract. Calc. Appl. 9(1), 8-14 (2018) · Zbl 1488.26098 [7] Farid, G., Rehman, A.U., Tariq, B.: On Hadamard-type inequalities for m-convex functions via Riemann-Liouville fractional integrals. Stud. Univ. Babeş-Bolyai, Math. 62(2), 141-150 (2017) · Zbl 1399.26050 · doi:10.24193/subbmath.2017.2.01 [8] Fejér, L.: Über die Fourierreihen II. Math. Naturwiss. Anz. Ungar. Akad. Wiss. 24, 369-390 (1906) · JFM 37.0286.01 [9] Fernandez, A., Baleanu, D., Srivastava, H.M.: Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions. Commun. Nonlinear Sci. Numer. Simul. 67, 517-527 (2019) · Zbl 1508.26006 · doi:10.1016/j.cnsns.2018.07.035 [10] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) · Zbl 1092.45003 [11] Loverro, A.: Fractional Calculus: History, Definitions and Applications for the Engineers. University of Notre Dame, Notre Dame (2004) [12] Özdemir, M.E., Akdemri, A.O., Set, E.: On (h−m)\((h-m)\)-convexity and Hadamard-type inequalities. Transylv. J. Math. Mech. 8(1), 51-58 (2016) [13] Podlubni, I.: Fractional Differential Equations. Academic Press, San Diego (1999) · Zbl 0924.34008 [14] Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7-15 (1971) · Zbl 0221.45003 [15] Rahman, G., Baleanu, D., Qurashi, M.A., Purohit, S.D., Mubeen, S., Arshad, M.: The extended Mittag-Leffler function via fractional calculus. J. Nonlinear Sci. Appl. 10, 4244-4253 (2017) · Zbl 1412.33039 · doi:10.22436/jnsa.010.08.19 [16] Rehman, A.U., Farid, G., Ain, Q.U.: Hadamard and Fejér-Hadamard inequalities for (h−m)\((h-m)\)-convex function via fractional integral containing the generalized Mittag-Leffler function. J. Sci. Res. Reports 18(5), 1-8 (2018) [17] Salim, T.O., Faraj, A.W.: A generalization of Mittag-Leffler function and integral operator associated with integral calculus. J. Fract. Calc. Appl. 3(5), 1-13 (2012) · Zbl 1488.33067 [18] Sarikaya, M.Z., Set, E., Yaldiz, H., Basak, N.: Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities. J. Math. Comput. Model 57(9), 2403-2407 (2013) · Zbl 1286.26018 · doi:10.1016/j.mcm.2011.12.048 [19] Sarikaya, M.Z., Yildirim, H.: On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes 17(2), 1049-1059 (2016) · Zbl 1389.26051 · doi:10.18514/MMN.2017.1197 [20] Shukla, A.K., Prajapati, J.C.: On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 336, 797-811 (2007) · Zbl 1122.33017 · doi:10.1016/j.jmaa.2007.03.018 [21] Srivastava, H.M., Tomovski, Z.: Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernal. Appl. Math. Comput. 211(1), 198-210 (2009) · Zbl 1432.30022 [22] Tunc, M.: On new inequalities for h-convex functions via Riemann-Liouville fractional integration. Filomat 27(4), 559-565 (2013) · Zbl 1324.26039 · doi:10.2298/FIL1304559T [23] Varosanec, S.: On h-convexity. J. Math. Anal. Appl. 326(1), 303-311 (2007) · Zbl 1111.26015 · doi:10.1016/j.jmaa.2006.02.086 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.