×

Time decay for several porous thermoviscoelastic systems of Moore-Gibson-Thompson type. (English) Zbl 1500.35272

Summary: In this paper, we consider several problems arising in the theory of thermoelastic bodies with voids. Four particular cases are considered depending on the choice of the constitutive tensors, assuming different dissipation mechanisms determined by Moore-Gibson-Thompson-type viscosity. For all of them, the existence and uniqueness of solutions are shown by using semigroup arguments. The energy decay of the solutions is also analyzed for each case.

MSC:

35Q74 PDEs in connection with mechanics of deformable solids
35Q79 PDEs in connection with classical thermodynamics and heat transfer
74F05 Thermal effects in solid mechanics
74A15 Thermodynamics in solid mechanics
74B10 Linear elasticity with initial stresses
80A19 Diffusive and convective heat and mass transfer, heat flow
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] N. Bazarra, J.R. Fernández, M.C. Leseduarte, A. Magaña and R. Quintanilla, On the thermoelasticity with two porosities: Asymptotic behavior, Math. Mech. Solids 24 (2019), 2713-2725. doi:10.1177/1081286518783219. · Zbl 07273335
[2] N. Bazarra, J.R. Fernández, A. Magaña and R. Quintanilla, A poro-thermoelastic problem with dissipative heat conduc-tion, J. Thermal Stresses 43 (2020), 1415-1436. doi:10.1080/01495739.2020.1780176.
[3] R. Borghesani and A. Morro, Time-reversal and thermodynamics of electromagnetic fields in materials with memory, Annali Mat. Pura Appl. 99 (1974), 65-80. doi:10.1007/BF02413719. · Zbl 0286.73009
[4] M. Ciarletta and A. Scalia, On some theorems in the linear theory of viscoelastic materials with voids, J. Elasticity 25 (1991), 149-158. doi:10.1007/BF00042463. · Zbl 0734.73027
[5] M. Conti, V. Pata, M. Pellicer and R. Quintanilla, On the analiticity of the MGT-viscoelastic plate with heat conduction, J. Differential Equations 269 (2020), 7862-7880. doi:10.1016/j.jde.2020.05.043. · Zbl 1442.35073
[6] M. Conti, V. Pata, M. Pellicer and R. Quintanilla, A new approach to MGT-thermoviscoelasticity, Discrete Cont. Dyn. Sys. 41 (2021), 4645-4666. doi:10.3934/dcds.2021052. · Zbl 1479.35855
[7] M. Conti, V. Pata and R. Quintanilla, Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature, Asymptotic Anal. 120 (2020), 1-21. doi:10.3233/ASY-191576. · Zbl 1458.35405
[8] S.C. Cowin, The viscoelastic behavior of linear elastic materials with voids, J. Elasticity 15 (1985), 185-191. doi:10. 1007/BF00041992. · Zbl 0564.73044
[9] S.C. Cowin and J.W. Nunziato, Linear elastic materials with voids, J. Elasticity 13 (1983), 125-147. doi:10.1007/ BF00041230. · Zbl 0523.73008
[10] M.J. Dieudonné, La Theorie Analytique des Polynomes d’une Variable (a Coefficients Quelconques), Gauthier-Villars, 1938.
[11] B. Feng and T.A. Apalara, Optimal decay for a porous elasticity system with memory, J. Math. Anal. Appl. 470 (2019), 1108-1128. doi:10.1016/j.jmaa.2018.10.052. · Zbl 1451.74076
[12] B. Feng and M. Yin, Decay of solutions for a one-dimensional porous elasticity system with memory: The case of non-equal wave speeds, Math. Mech. Solids 24 (2019), 2361-2373. doi:10.1177/1081286518757299. · Zbl 07254358
[13] J.R. Fernández and R. Quintanilla, Moore-Gibson-Thompson theory for thermoelastic dielectrics, Appl. Math. Mech. 42 (2021), 309-316. doi:10.1007/s10483-021-2703-9. · Zbl 1490.37109
[14] A.E. Green and P.M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses 15 (1992), 253-264. doi:10. 1080/01495739208946136.
[15] A.E. Green and P.M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity 31 (1993), 189-208. doi:10.1007/ BF00044969. · Zbl 0784.73009
[16] A.E. Green and P.M. Naghdi, A verified procedure for construction of theories of deformable media. I. Classical contin-uum physics, II. Generalized continua, III. Mixtures of interacting continua, Proc. Royal Society London A 448 (1995), 335-356, 357-377, 378-388.
[17] M.E. Gurtin, Time-reversal and symmetry in the thermodynamics of materials with memory, Arch. Rat. Mech. Anal. 44 (1972), 387-399. doi:10.1007/BF00249968. · Zbl 0249.73003
[18] D. Ieşan, A theory of thermoelastic materials with voids, Acta Mechanica 60 (1986), 67-89. doi:10.1007/BF01302942. · Zbl 0597.73007
[19] D. Ieşan and R. Quintanilla, On the theory of interactions with memory, J. Thermal Stresses 25 (2002), 1161-1177. doi:10. 1080/01495730290074586.
[20] D. Ieşan and R. Quintanilla, On a theory of thermoelastic materials with double porosity structure, J. Thermal Stresses 37 (2014), 1017-1036. doi:10.1080/01495739.2014.914776.
[21] H. Kumar and S. Mukhopadyay, Thermoelastic damping analysis in microbeam resonators based on Moore-Gibson-Thompson generalized thermoelasticity theory, Acta Mechanica 231 (2020), 3003-3015. doi:10.1007/s00707-020-02688-6. · Zbl 1440.74108
[22] R. Kumar and R. Vohra, Effect of Hall current in thermoelastic materials with double porosity structure, Int. J. Appl. Mech. Engrg. 22 (2017), 303-319. doi:10.1515/ijame-2017-0018.
[23] M.C. Leseduarte, A. Magaña and R. Quintanilla, On the time decay of solutions in porous-thermo-elasticity of type II, Discrete Cont. Dyn. Systems -B 13 (2010), 375-391. doi:10.3934/dcdsb.2010.13.375. · Zbl 1197.35053
[24] Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chapman & Hall/CRC Research Notes in Mathe-matics, Vol. 398, Chapman & Hall/CRC, Boca Raton, FL, 1999.
[25] A. Magaña and R. Quintanilla, On the exponential decay of solutions in one-dimensional generalized porous-thermo-elasticity, Asymptotic Anal. 49 (2006), 173-187.
[26] A. Magaña and R. Quintanilla, On the time decay of solutions in porous-elasticity with quasi-static microvoids, J. Math. Anal. Appl. 331 (2007), 617-630. doi:10.1016/j.jmaa.2006.08.086. · Zbl 1114.35024
[27] A. Magaña and R. Quintanilla, Exponential decay in one-dimensional type II/III thermoelasticity with porosities, Math. Meth. Appl. Sci. 43 (2020), 6921-6937. doi:10.1002/mma.6438. · Zbl 1451.74069
[28] A. Magaña and R. Quintanilla, Exponential stability in three-dimensional type III thermo-porous-elasticity with mi-crotemperatures, J. Elasticity 139 (2020), 153-161. doi:10.1007/s10659-019-09748-6. · Zbl 1435.35378
[29] A. Miranville and R. Quintanilla, Exponential decay in one-dimensional type II thermoviscoelasticity with voids, Appl. Math. Letters 94 (2019), 30-37. doi:10.1016/j.aml.2019.02.014. · Zbl 1415.35259
[30] A. Miranville and R. Quintanilla, Exponential decay in one-dimensional type II thermoviscoelasticity with voids, J. Com-put. Appl. Math. 368 (2020), 112573. doi:10.1016/j.cam.2019.112573. · Zbl 1439.35071
[31] S. Nicaise and J. Valein, Stabilization of non-homogeneous elastic materials with voids, J. Math. Anal. Appl. 387 (2012), 1061-1087. doi:10.1016/j.jmaa.2011.10.018. · Zbl 1243.35153
[32] M. Pellicer and R. Quintanilla, On uniqueness and instability for some thermomechanical problems involving the Moore-Gibson-Thompson equation, Zeit. Ang. Math. Phys. 71 (2020), 84. doi:10.1007/s00033-020-01307-7. · Zbl 1434.74042
[33] R. Quintanilla, A condition on the delay parameters in the one-dimensional dual-phase-lag thermoelastic theory, J. Ther-mal Stresses 26 (2003), 713-721. doi:10.1080/713855996.
[34] R. Quintanilla, Moore-Gibson-Thompson thermoelasticity, Math. Mech. Solids 24 (2019), 4020-4031. doi:10.1177/ 1081286519862007. · Zbl 07273404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.