×

GENERIC for dissipative solids with bulk-interface interaction. (English) Zbl 1500.74002

Español, Malena I. (ed.) et al., Research in mathematics of materials science. Cham: Springer. Assoc. Women Math. Ser. 31, 333-364 (2022).
Summary: The modeling framework of GENERIC was originally introduced by M. Grmela and H. C. Öttinger [“Dynamics and thermodynamics of complex fluids. I: Development of a general formalism”, Phys. Rev. E 56, No. 6, 6620–6632 (1997; doi:10.1103/PhysRevE.56.6620)] for thermodynamically closed systems. It is phrased with the aid of the energy and entropy as driving functionals for reversible and dissipative processes and suitable geometric structures. Based on the definition of functional derivatives, we propose a GENERIC framework for systems with bulk-interface interaction and apply it to discuss the GENERIC structure of models for delamination processes.
For the entire collection see [Zbl 1495.74001].

MSC:

74A40 Random materials and composite materials
74A45 Theories of fracture and damage
74D99 Materials of strain-rate type and history type, other materials with memory (including elastic materials with viscous damping, various viscoelastic materials)
74A15 Thermodynamics in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Arnold, V.; Kozlov, V.; Neishtadt, A., Mathematical Aspects of Classical and Celestial Mechanics (2006), Berlin: Springer, Berlin · Zbl 1105.70002
[2] Barenblatt, G., The mathematical theory of equilibrium of cracks in brittle fracture, Adv. Appl. Mech., 7, 55-129 (1962)
[3] Bonetti, E.; Bonfanti, G.; Rossi, R., Thermal effects in adhesive contact: modelling and analysis, Nonlinearity, 22, 11, 2697-2731 (2009) · Zbl 1185.35122
[4] Bonetti, E.; Bonfanti, G.; Rossi, R., Analysis of a model coupling volume and surface processes in thermoviscoelasticity, Nonlinear Anal. Real World Appl., 35, 6, 2349-2403 (2015) · Zbl 1336.35188
[5] Bonetti, E.; Bonfanti, G.; Rossi, R., Modeling via the internal energy balance and analysis of adhesive contact with friction in thermoviscoeleasticity, Nonlinear Anal. Real World Appl., 22, 473-507 (2015) · Zbl 1304.35672
[6] E.C. D’Avignon, Physical consequences of the Jacobi identity (2015). https://arxiv.org/abs/1510.06455
[7] Frémond, M., Non-Smooth Thermomechanics (2002), Berlin: Springer, Berlin · Zbl 0990.80001
[8] Glavatskiy, K.; Bedeaux, D., Non-equilibrium thermodynamics for surfaces; square gradient theory, Eur. Phys. J. Special Top., 222, 161-175 (2013)
[9] Glitzky, A.; Mielke, A., A gradient structure for systems coupling reaction-diffusion effects in bulk and interfaces, ZAMP Z. Angew. Math. Phys., 64, 29-52 (2013) · Zbl 1270.35256
[10] Griffith, A., The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. Lond. A, 221, 163-198 (1921) · Zbl 1454.74137
[11] Grmela, M.; Öttinger, H., Dynamics and thermodynamics of complex fluids, I. Development of a general formalism. Phys. Rev. E, 56, 6, 6620-6632 (1997)
[12] Halphen, B.; Nguyen, Q., Sur les matériaux standards généralisés, J. Mécanique, 14, 39-63 (1975) · Zbl 0308.73017
[13] Hütter, M.; Svendsen, B., Thermodynamic model formulation for viscoplastic solids as general equations for non-equilibrium reversible-irreversible coupling, Continuum Mech. Thermodyn., 24, 211-227 (2012) · Zbl 1342.74046
[14] Maas, J.; Mielke, A., Modeling of chemical reaction systems with detailed balance using gradient structures, J. Stat. Phys., 181, 2257-2303 (2020) · Zbl 1462.80011
[15] Mielke, A., Formulation of thermoelastic dissipative material behavior using GENERIC, Continuum Mech. Thermodyn., 23, 3, 233-256 (2011) · Zbl 1272.74137
[16] Mielke, A., A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems, Nonlinearity, 24, 4, 1329-1346 (2011) · Zbl 1227.35161
[17] A. Mielke, Free energy, free entropy, and a gradient structure for thermoplasticity, in Innovative Numerical Approaches for Multi-Field and Multi-Scale Problems, ed. by K. Weinberg, A. Pandolfi. In Honor of Michael Ortiz’s 60th Birthday. Lecture Notes in Applied and Computational Mechanics, vol. 81 (Springer, Cham, 2016), pp. 135-160
[18] A. Mielke, D. Peschka, N. Rotundo, M. Thomas, On some extension of energy-drift-diffusion models: gradient structure for optoelectronic models of semiconductors, in Progress in Industrial Mathematics at ECMI 2016, ed. by P. Quintela et al. (ed.) Mathematics in Industry, vol. 26 (Springer, Berlin, 2017), pp. 291-298
[19] Mittnenzweig, M.; Mielke, A., An entropic gradient structure for Lindblad equations and GENERIC for quantum systems coupled to macroscopic models, J. Stat. Phys., 167, 205-233 (2017) · Zbl 1376.82046
[20] Morrison, PJ, Hamiltonian description of the ideal fluid, Rev. Mod. Phys., 70, 2, 467-521 (1998) · Zbl 1205.37093
[21] A. Moses Badlyan, C. Zimmer, Operator-GENERIC formulation of thermodynamics of irreversible processes (2018). https://arxiv.org/abs/1807.09822
[22] Öttinger, H., Nonequilibrium thermodynamics for open systems, Phys. Rev. E, 73 (2006)
[23] Öttinger, H.; Grmela, M., Dynamics and thermodynamics of complex fluids, II. Illustrations of a general formalism. Phys. Rev. E, 56, 6, 6633-6655 (1997)
[24] Pavelka, M.; Klika, V.; Grmela, M., Multiscale Thermo-Dynamics (2018), Berlin: De Gruyter, Berlin · Zbl 1419.80001
[25] D. Peschka, M. Thomas, T. Ahnert, A. Münch, B. Wagner, Gradient Structures for Flows of Concentrated Suspensions. CIM Series in Mathematical Sciences (Springer, Berlin, 2019), pp. 295-318 · Zbl 1442.76125
[26] Rossi, R.; Roubíček, T., Thermodynamics and analysis of rate-independent adhesive contact at small strains, Nonlinear Anal., 74, 10, 3159-3190 (2011) · Zbl 1217.35108
[27] Rossi, R.; Roubíček, T., Adhesive contact delaminating at mixed mode, its thermodynamics and analysis, Interfaces Free Bound., 15, 1, 1-37 (2013) · Zbl 1275.35131
[28] Rossi, R.; Thomas, M., From an adhesive to a brittle delamination model in thermo-visco-elasticity, ESAIM Control Optim. Calc. Var., 21, 1-59 (2015) · Zbl 1323.35101
[29] Rossi, R.; Thomas, M., From adhesive to brittle delamination in visco-elastodynamics, Math. Models Methods Appl. Sci., 27, 1489-1546 (2017) · Zbl 1375.49019
[30] Rurali, R.; Colombo, L.; Cartoixà, X.; Wilhelmsen, Ø.; Trinh, T.; Bedeaux, D.; Kjelstrup, S., Heat transport through a solid-solid junction: the interface as an autonomous thermodynamic system, Phys. Chem. Chem. Phys., 18, 13741 (2016)
[31] M. Thomas, A comparison of delamination models: modeling, properties, and applications, in Mathematical Analysis of Continuum Mechanics and Industrial Applications II, Proceedings of the International Conference CoMFoS16, ed. by P. van Meurs, M. Kimura, H. Notsu. Mathematics for Industry, vol. 30 (Springer, Singapore, 2017), pp. 27-38
[32] Thomas, M.; Zanini, C., Cohesive zone-type delamination in visco-elasticity, Discrete Contin. Dyn. Syst. Ser. S, 10, 1487-1517 (2017) · Zbl 1366.35190
[33] Vágner, P.; Pavelka, M.; Esen, O., Multiscale thermodynamics of charged mixtures, Contin. Mech. Thermodyn., 33, 237-268 (2021)
[34] A. Zafferi, D. Peschka, M. Thomas, GENERIC framework for reactive fluid flows. ZAMM Z. Angew. Math. Mech., published online 9.5.2022. doi:10.1002/zamm.202100254
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.