A thermodynamical conform for the curing coupling in elastomer at large strains. (Russian. English summary) Zbl 1500.74051

Summary: In the framework of a two-component medium, the phenomenological approach is used to develop a system of constitutive equations describing the thermomechanical behavior of elastomers during curing. This model is designed to describe the stress-strain states in the temperature range comprising the intervals of phase and relaxation transitions at lage strains within a rigorous termodinamical framework. The results of numerical experiments demonstrating the possibility of describing the characteristic properties of deformation processes typical of elastomers are given.


74N20 Dynamics of phase boundaries in solids
74E30 Composite and mixture properties
74F05 Thermal effects in solid mechanics
74D10 Nonlinear constitutive equations for materials with memory
74A15 Thermodynamics in solid mechanics
74F25 Chemical and reactive effects in solid mechanics
Full Text: DOI MNR


[1] N. Kh. Arutyunyan, A. V. Manzhirov, V. E. Naumov, Kontaktnye zadachi mekhaniki rastuschikh tel, Nauka, M., 1991, 176 pp. · Zbl 0744.73040
[2] N. Kh. Arutyunyan, A. D. Drozdov, V. E. Naumov, Mekhanika rastuschikh vyazkouprugoplasticheskikh tel, Nauka, M., 1987, 471 pp.
[3] A. A. Ilyushin, B. E. Pobedrya, Osnovy matematicheskoi teorii termovyazkouprugosti, Nauka, M., 1970, 280 pp.
[4] V. V. Moskvitin, Soprotivlenie vyazkouprugikh materialov, Nauka, M., 1972, 328 pp.
[5] L. A. Golotina, V. P. Matveenko, I. N. Shardakov, “Analysis of deformation process characteristics in amorphous-crystalline polymers”, Mechanics of Solids, 47 (2012), 634-340
[6] K. Kannan, K. Rajagopal, “A thermodynamical framework for chemically reacting systems”, Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 62 (2011), 331-363 · Zbl 1273.74098
[7] S. A. Chester, L. Anand, “A thermo-mechanically coupled theory for fluid permeation in elastomeric materials: Application to thermally responsive gels”, Journal of the Mechanics and Physics of Solids, 59:10 (2011), 1978-2006 · Zbl 1270.74057
[8] A. V. Amirkhizi, J. Isaacs, J. McGee, S. Nemat-Nasser, “An experimentally-based viscoelastic constitutive model for polyurea, including pressure and temperature effects”, Philosophical Magazine, 86 (2006), 5847-5866
[9] A. Amin, A. Lion, S. Sekita, Y. Okui, “Nonlinear dependence of viscosity in modeling the rate-dependent response of natural and high damping rubbers in compression and shear: Experimental identification and numerical verification”, International Journal of Plasticity, 22:9 (2006), 1610-1657 · Zbl 1146.74310
[10] J. Plagge, M. Kluppel, “A physically based model of stress softening and hysteresis of filled rubber including rate- and temperature dependency”, International Journal of Plasticity, 89 (2017), 173-196
[11] E. M. Arruda, M. C. Boyce, “A 3-dimensional constitutive model for the large stretch behavior of rubber elastic materials”, Journal of the Mechanics and Physics of Solids, 41 (1993), 389-412 · Zbl 1355.74020
[12] M. Andre, P. Wriggers, “Thermo-mechanical behaviour of rubber materials during vulcanization”, International Journal of Solids and Structures, 42:1617 (2005), 4758-4778 · Zbl 1119.74363
[13] K. A. Chekhonin, V. D. Vlasenko, “Numerical Modelling of Compression Cure High-Filled Polimer Material”, Journal of Siberian Federal University. Mathematics \(\&\) Physics, 14:6 (2021), 805-814 · Zbl 07511005
[14] K. A. Chekhonin, V. D. Vlasenko, “Gradientnyi algoritm optimizatsii temperaturno-konversionnoi zadachi pri otverzhdenii vysokonapolnennykh polimernykh materialov”, Informatika i sistemy upravleniya, 4:62 (2019), 58-70
[15] K. A. Chekhonin, V. D. Vlasenko, “The role of curing stresses in subsequent response and damage of elastomer composites”, International Conference on Computational Mechanics and Modern Applied Software Systems (CMMASS’2021), Journal of Physics: Conference Series, 2021, 68-75
[16] K. A. Chekhonin, V. D. Vlasenko, “The Role of Curing Stresses in Subsequent Response and Damage of High Energetic materials”, The conference on High Energy Processes in Condensed Matter (HEPCM)-2021, Journal of Physics: Conference Series, 2021, 55-63
[17] V. K. Bulgakov, K. A. Chekhonin, “Modeling of a 3D Problem of compression forming system “Composite shell – low compressible consolidating Filler”, J. Mathematical Modeling, 4 (2002), 121-131 · Zbl 1035.74023
[18] K. A. Chekhonin, “Osnovy teorii otverzhdeniya tverdykh raketnykh topliv”, Vestnik ITPS, 12:1 (2016), 131-145
[19] L. R. Herrmann, “Elasticity Equations for Incompressible and Nearly Incompressible Materials by a Variational Theorem”, AIAA J., 3 (1965), 1896-1900
[20] E. Reissner, “On a variational principle for elastic displacements and pressure Incompressible Materials by a Variational Theorem”, J. Appl. Mech., 51 (1984), 444-445 · Zbl 0564.73019
[21] V. K. Bulgakov, K. A. Chekhonin, Osnovy teorii metoda smeshannykh konechnykh elementov, Izd-vo Khabar. tekhn. un-t, Khabarovsk, 1999, 357 pp.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.