Ou, Miao-Jung Yvonne; Luger, Annemarie On applications of Herglotz-Nevanlinna functions in material sciences. II: Extended applications and generalized theory. (English) Zbl 1500.74059 Español, Malena I. (ed.) et al., Research in mathematics of materials science. Cham: Springer. Assoc. Women Math. Ser. 31, 461-499 (2022). Summary: Part II of the review article focuses on the applications of Herglotz-Nevanlinna functions in material sciences. It presents a diverse set of applications with details and the role of Herglotz-Nevanlinna functions clearly pointed out. This chapter is concluded by a collection of existent generalizations of the class of Herglotz-Nevanlinna functions that are motivated by potential applications.For Part I, see [the authors, ibid. 433–459 (2022; Zbl 1501.74067)].For the entire collection see [Zbl 1495.74001]. Cited in 1 Review MSC: 74S70 Complex-variable methods applied to problems in solid mechanics 74A40 Random materials and composite materials 74Q20 Bounds on effective properties in solid mechanics 74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.) Keywords:matrix-valued Herglotz-Nevanlinna function; two-phase composite; bound on effective property; permeability tensor; porous material Citations:Zbl 1501.74067 PDF BibTeX XML Cite \textit{M.-J. Y. Ou} and \textit{A. Luger}, Assoc. Women Math. Ser. 31, 461--499 (2022; Zbl 1500.74059) Full Text: DOI arXiv OpenURL References: [1] J. Agler, J.E. McCarthy, N.J. Young, Operator monotone functions and Löwner functions of several variables. Ann. Math. (2) 176(3), 1783-1826 (2012) · Zbl 1268.47025 [2] Agler, J.; Tully-Doyle, R.; Young, NJ, Nevanlinna representations in several variables, J. Funct. Anal., 270, 8, 3000-3046 (2016) · Zbl 1337.32013 [3] N.I Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis (Hafner Pub. Co., New York, 1965) · Zbl 0135.33803 [4] Avellaneda, M.; Majda, AJ, Stieltjes integral representation and effective diffusivity bounds for turbulent transport, Phys. Rev. Lett., 62, 753 (1989) [5] Avellaneda, M.; Majda, AJ, An integral representation and bounds on the effective diffusivity in passive advection by laminar and turbulent flows, Commun. Math. Phys., 138, 2, 339-391 (1991) · Zbl 0731.76082 [6] Avellaneda, M.; Torquato, S., Rigorous link between fluid permeability, electrical conductivity, and relaxation times for transport in porous media, Phys. Fluids A Fluid Dyn., 3, 2529 (1991) · Zbl 0746.76080 [7] Avellaneda, M.; Vergassola, M., Stieltjes integral representation of effective diffusivities in time-dependent flows, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., 52, 3, 3249-3251 (1995) [8] Ball, JA; Kaliuzhnyi-Verbovetskyi, DS, Schur-Agler and Herglotz-Agler classes of functions: positive-kernel decompositions and transfer-function realizations, Adv. Math., 280, 121-187 (2015) · Zbl 1321.32002 [9] A. Bensoussan, J.L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures, 2nd edn. (American Mathematical Society, 2011) · Zbl 1229.35001 [10] Bergman, DJ, The dielectric constant of a composite material—a problem in classical physics, Phys. Rep., 43, 9, 377-407 (1978) [11] Bergman, DJ, Exactly solvable microscopic geometries and rigorous bounds for the complex dielectric constant of a two-component composite material, Phys. Rev. Lett., 44, 1285-1287 (1980) [12] Bergman, DJ, Bounds for the complex dielectric constant of a two-component composite material, Phys. Rev. B, 23, 3058-3065 (1981) [13] Bergman, DJ, Rigorous bounds for the complex dielectric constant of a two-component composite, Ann. Phys., 138, 1, 78-114 (1982) [14] Bergman, DJ, Hierarchies of Stieltjes functions and their application to the calculation of bounds for the dielectric constant of a two-component composite medium, SIAM J. Appl. Math., 53, 4, 915-930 (1993) · Zbl 0782.30001 [15] A. Bernland, A. Luger, M. Gustafsson, Sum rules and constraints on passive systems. J. Phys. A Math. Theor. 44(14), 145205 (2011) · Zbl 1222.30031 [16] C. Bi, M.J. Yvonne Ou, S. Zhang Integral Representation of Hydraulic Permeability. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, (2022). doi:10.1017/prm.2022.25 [17] Biot, MA, Theory of propagation of elastic waves in a fluid-saturated porous solid, I. Low-frequency range. J. Acoust. Soc. Am., 28, 168 (1956) [18] Biot, MA, Theory of propagation of elastic waves in a fluid-saturated porous solid, II. Higher frequency range. J. Acoust. Soc. Am., 28, 2, 179-191 (1956) [19] C. Bonifasi-Lista, E. Cherkaev, Electrical impedance spectroscopy as a potential tool for recovering bone porosity. Phys. Med. Biol. 54(10), 3063 (2009) · Zbl 1213.74223 [20] Bruno, O.; Golden, K., Interchangeability and bounds on the effective conductivity of the square lattice, J. Stat. Phys., 61, 1, 365-386 (1990) [21] Bruno, OP; Leo, PH, On the stiffness of materials containing a disordered array of microscopic holes or hard inclusions, Arch. Rational Mech. Anal., 121, 4, 303-338 (1993) · Zbl 0781.73007 [22] Carcione, JM, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic and Porous Media (2001), Oxford: Pergamon-Elsevier, Oxford [23] M. Cassier, G.W. Milton, Bounds on Herglotz functions and fundamental limits of broadband passive quasistatic cloaking. J. Math. Phys. 58(7), 071504 (2017) · Zbl 1375.30046 [24] M. Cassier, A. Welters, G.W. Milton, Analyticity of the Dirichlet-to-Neumann map for the time-harmonic Maxwell’s equations. arXiv:1512.05838 [math.AP] (2015) [25] Charlaix, E.; Kushnick, AP; Stokes, JP, Experimental study of dynamic permeability in porous media, Phys. Rev. Lett., 61, 1595-1598 (1988) [26] E. Cherkaev, Inverse homogenization for evaluation of effective properties of a mixture. Inverse Problems 17(4), 1203 (2001) · Zbl 0988.35165 [27] Cherkaeva, E.; Golden, KM, Inverse bounds for microstructural parameters of composite media derived from complex permittivity measurements, Waves Random Media, 8, 4, 437-450 (1998) · Zbl 0932.74059 [28] E. Cherkaev, M.J.Y. Ou, Dehomogenization: reconstruction of moments of the spectral measure of the composite. Inverse Problems 24(6), 065008 (2008) · Zbl 1161.35513 [29] G.F. Dell’Antonio, R. Figari, E. Orlandi, An approach through orthogonal projections to the study of inhomogeneous or random media with linear response. Ann. Inst. Henri Poincare (B) 44(1), 1-28 (1986) · Zbl 0636.73002 [30] Delsarte, P.; Genin, Y.; Kamp, Y., Canonical factorization of pseudo-Carathéodory functions, in Computational and Combinatorial Methods in Systems Theory (Stockholm, 1985), 299-307 (1986), Amsterdam: North-Holland, Amsterdam · Zbl 0607.30032 [31] Delsarte, P.; Genin, Y.; Kamp, Y., Pseudo-Carathéodory functions and Hermitian Toeplitz matrices, Philips J. Res., 41, 1, 1-54 (1986) · Zbl 0607.30033 [32] Derkach, V.; Hassi, S.; de Snoo, H., Operator models associated with Kac subclasses of generalized Nevanlinna functions, Methods Funct. Anal. Topol., 5, 1, 65-87 (1999) · Zbl 0948.47028 [33] Dettman, JW, Applied Complex Variables (1965), Inc: Dover Publications, Inc · Zbl 0178.41301 [34] Dijksma, A.; Kurasov, P.; Shondin, Yu, High order singular rank one perturbations of a positive operator, Integral Equations Oper. Theory, 53, 2, 209-245 (2005) · Zbl 1104.47024 [35] A. Dijksma, H. Langer, A. Luger, Yu. Shondin, A factorization result for generalized Nevanlinna functions of the class \(\mathcal{N}_\kappa \) . Integral Equations Oper. Theory 36(1), 121-125 (2000) · Zbl 0958.30023 [36] A. Dijksma, H. Langer, Yu. Shondin, C. Zeinstra, Self-adjoint operators with inner singularities and Pontryagin spaces, in Operator Theory and Related Topics, Vol. II (Odessa, 1997), volume 118 of Oper. Theory Adv. Appl. (Birkhäuser, Basel, 2000), pp. 105-175 · Zbl 0965.47022 [37] Dyukarev, Yu; Katsnelson, V., Multiplicative and additive classes of Stieltjes analytic matrix valued functions, and interpolation problems associated with them, Am. Math. Soc. Transl., 131, 55-70 (1986) · Zbl 0594.30038 [38] Figotin, A.; Schenker, JH, Spectral theory of time dispersive and dissipative systems, J. Stat. Phys., 118, 1, 199-263 (2005) · Zbl 1130.82021 [39] Figotin, A.; Schenker, JH, Hamiltonian treatment of time dispersive and dissipative media within the linear response theory, J. Comput. Appl. Math., 204, 2, 199-208 (2007) · Zbl 1126.78006 [40] Figotin, A.; Schenker, JH, Hamiltonian structure for dispersive and dissipative dynamical systems, J. Stat. Phys., 128, 4, 969-1056 (2007) · Zbl 1128.82012 [41] J. Gelfgren, Multipoint padé approximants used for piecewise rational interpolation and for interpolation to functions of Stieltjes’ type. Technical report, Umeå universitet, 1978 [42] Golden, K., Bounds on the complex permittivity of a multicomponent material, J. Mech. Phys. Solids, 34, 4, 333-358 (1986) · Zbl 0591.73001 [43] Golden, K.; Papanicolaou, G., Bounds for effective parameters of heterogeneous media by analytic continuation, Commun. Math. Phys., 90, 4, 473-491 (1983) [44] Golden, KM; Murphy, NB; Cherkaev, E., Spectral analysis and connectivity of porous microstructures in bone, J. Biomech., 44, 2, 337-344 (2011) [45] Hashin, Z.; Shtrikman, S., A variational approach to the theory of the effective magnetic permeability of multiphase materials, J. Appl. Phys., 33, 3125 (1962) · Zbl 0111.41401 [46] Hashin, Z.; Shtrikman, S., A variational approach to the theory of the elastic behaviour of polycrystals, J. Mech. Phys. Solids, 10, 4, 343-352 (1962) · Zbl 0119.40105 [47] Hashin, Z.; Shtrikman, S., A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids, 11, 2, 127-140 (1963) · Zbl 0108.36902 [48] Ivanenko, Y.; Nedic, M.; Gustafsson, M.; Jonsson, BLG; Luger, A.; Nordebo, S., Quasi-Herglotz functions and convex optimization, R. Soc. Open Sci., 7, 191541 (2020) [49] Jikov, VV; Kozlov, SM; Oleinik, OA, Homogenization of Differential Operators and Integral Functionals (1994), Berlin: Springer, Berlin [50] Johnson, DL; Koplik, J.; Dashen, R., Theory of dynamic permeability and tortuosity in fluid-saturated porous media, J. Fluid Mech., 176, 1, 379-402 (1987) · Zbl 0612.76101 [51] Kac, IS; Krein, MG, R-functions-analytic functions mapping the upper halfplane into itself, AMS Transl., 103, 1-18 (1974) · Zbl 0291.34016 [52] Kantor, Y.; Bergman, DJ, Improved rigorous bounds on the effective elastic moduli of a composite material, J. Mech. Phys. Solids, 32, 1, 41-62 (1984) · Zbl 0542.73003 [53] Karlin, S.; Studden, WJ, Tchebycheff Systems, with Applications in Analysis and Statistics, volume 15 of Pure and Applied Mathematics (Interscience Publishers) (1966), New York: Interscience Publishers, New York [54] Katsnelson, V., Stieltjes functions and Hurwitz stable entire functions, Complex Anal. Oper. Theory, 5, 611 (2011) · Zbl 1243.30063 [55] Korányi, A.; Pukánszky, L., Holomorphic functions with positive real part on polycylinders, Trans. Am. Math. Soc., 108, 3, 449-456 (1963) · Zbl 0136.07103 [56] M.G. Kreı̆n, H. Langer, Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume Π_κ zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen. Math. Nachr. 77, 187-236 (1977) · Zbl 0412.30020 [57] Kurasov, P.; Luger, A., An operator theoretic interpretation of the generalized Titchmarsh-Weyl coefficient for a singular Sturm-Liouville problem, Math. Phys. Anal. Geom., 14, 2, 115-151 (2011) · Zbl 1267.34052 [58] Lipton, R.; Avellaneda, M., Darcy’s law for slow viscous flow past a stationary array of bubbles, Proc. R. Soc. Edinb. A Math., 114, 1-2, 71-79 (1990) · Zbl 0850.76778 [59] Lu, JF; Hanyga, A., Wave field simulation for heterogeneous porous media with singular memory drag force, J. Comput. Phys., 208, 2, 651-674 (2005) · Zbl 1329.76338 [60] Luger, A., A factorization of regular generalized Nevanlinna functions, Integral Equations Oper. Theory, 43, 3, 326-345 (2002) · Zbl 1004.30025 [61] Luger, A., About generalized zeros of non-regular generalized Nevanlinna functions, Integral Equations Oper. Theory, 45, 4, 461-473 (2003) · Zbl 1051.30030 [62] Luger, A.; Nedic, M., Herglotz-Nevanlinna functions in several variables, J. Math. Anal. Appl., 472, 1, 1189-1219 (2019) · Zbl 1418.32002 [63] A. Luger, M. Nedic, On quasi-Herglotz functions in one variable. arXiv:1909.10198 (2019) · Zbl 1418.32002 [64] Luger, A.; Nedic, M., Geometric properties of measures related to holomorphic functions having positive imaginary or real part, J. Geom. Anal., 31, 3, 2611-2638 (2021) · Zbl 1460.28002 [65] Masson, YJ; Pride, SR, Finite-difference modeling of Biot’s poroelastic equations across all frequencies, Geophysics, 75, 2, N33-N41 (2010) [66] McPhedran, RC; Milton, GW, Bounds and exact theories for the transport properties of inhomogeneous media, Appl. Phys. A, 26, 4, 207-220 (1981) [67] Mcphedran, RC; Milton, GW, Inverse transport problems for composite media, MRS Online Proc. Library, 195, 1, 257-274 (1990) [68] Milton, GW, Bounds on the complex dielectric constant of a composite material, Appl. Phys. Lett., 37, 3, 300-302 (1980) [69] Milton, GW, Bounds on the transport and optical properties of a two-component composite material, J. Appl. Phys., 52, 8, 5294-5304 (1981) [70] Milton, GW, Bounds on the complex permittivity of a two-component composite material, J. Appl. Phys., 52, 8, 5286-5293 (1981) [71] G.W. Milton, The Theory of Composites (Cambridge University Press, 2002). Cambridge Books Online [72] Milton, GW; Golden, K., Representations for the conductivity functions of multicomponent composites, Commun. Pure Appl. Math., 43, 5, 647-671 (1990) · Zbl 0715.35075 [73] N.B. Murphy, E. Cherkaev, J. Zhu, J. Xin, K.M. Golden, Spectral analysis and computation for homogenization of advection diffusion processes in steady flows. J. Math. Phys. 61(1), 013102 (2020) · Zbl 1432.86010 [74] Orum, C.; Cherkaev, E.; Golden, KM, Recovery of inclusion separations in strongly heterogeneous composites from effective property measurements, Proc. R. Soc. A Math. Phys. Eng. Sci., 468, 2139, 784-809 (2012) · Zbl 1364.74011 [75] Ou, MJY, Two-parameter integral representation formula for the effective elastic moduli of two-phase composites, Complex Variables Elliptic Equations, 57, 2-4, 411-424 (2012) · Zbl 1235.74018 [76] M.J.Y. Ou, On reconstruction of dynamic permeability and tortuosity from data at distinct frequencies. Inverse Probl. 30(9), 095002 (2014) · Zbl 1456.74037 [77] Ou, MJY; Cherkaev, E., On the integral representation formula for a two-component composite, Math. Methods Appl. Sci., 29, 6, 655-664 (2006) · Zbl 1146.74009 [78] M.J.Y. Ou, H.J. Woerdeman, On the augmented Biot-JKD equations with pole-residue representation of the dynamic tortuosity. Oper. Theory Adv. Appl. 272, 341-362 (2019). Springer Nature [79] Prager, S., Improved variational bounds on some bulk properties of a two-phase random medium, J. Chem. Phys., 50, 10, 4305-4312 (1969) [80] S.R. Pride, F.D. Morgan, A.F. Gangi, Drag forces of porous-medium acoustics. Phys. Rev. B 47(9), 4964 (1993) [81] Rudin, W., Real and Complex Analysis (1987), New York: McGraw-Hill Book Co., New York · Zbl 0925.00005 [82] E. Sánchez-Palencia, Non-homogeneous Media and Vibration Theory, volume 127 of Lecture Notes in Physics (Springer, 1980) · Zbl 0432.70002 [83] Tartar, L., The General Theory of Homogenization, A Personalized Introduction, volume 7 of Lecture Notes of the Unione Matematica Italiana (2010), Berlin: Springer, Berlin [84] Wiener, O., Die theorie des mischkörpers für das feld der stationären strömung, Abh. Sächs. Akad. Wiss. Leipzig Math.-Naturwiss. Kl., 32, 509 (1912) [85] Xie, J.; Ou, MJY; Xu, L., A discontinuous Galerkin method for wave propagation in orthotropic poroelastic media with memory terms, J. Comput. Phys., 397, 108825 (2019) · Zbl 1453.74032 [86] Zhang, D.; Cherkaev, E., Reconstruction of spectral function from effective permittivity of a composite material using rational function approximations, J. Comput. Phys., 228, 15, 5390-5409 (2009) · Zbl 1280.78005 [87] V. Zhikov, G. Yosifian, Introduction to the theory of two-scale convergence. J. Math. Sci. 197(3), 325 (2014) · Zbl 1328.46029 [88] Zhou, MY; Sheng, P., First-principles calculations of dynamic permeability in porous media, Phys. Rev. B, 39, 12027 (1989) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.