×

Optimal decision theory for diagnostic testing: minimizing indeterminate classes with applications to saliva-based SARS-CoV-2 antibody assays. (English) Zbl 1500.92041

Summary: In diagnostic testing, establishing an indeterminate class is an effective way to identify samples that cannot be accurately classified. However, such approaches also make testing less efficient and must be balanced against overall assay performance. We address this problem by reformulating data classification in terms of a constrained optimization problem that (i) minimizes the probability of labeling samples as indeterminate while (ii) ensuring that the remaining ones are classified with an average target accuracy \(X\). We show that the solution to this problem is expressed in terms of a bathtub-type principle that holds out those samples with the lowest local accuracy up to an \(X\)-dependent threshold. To illustrate the usefulness of this analysis, we apply it to a multiplex, saliva-based SARS-CoV-2 antibody assay and demonstrate up to a 30% reduction in the number of indeterminate samples relative to more traditional approaches.

MSC:

92C50 Medical applications (general)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Lerner, A. M.; Eisinger, R. W.; Lowy, D. R.; Petersen, L. R.; Humes, R.; Hepburn, M.; Cassetti, M. C., The COVID-19 serology studies workshop: Recommendations and challenges, Immunity, 53, 1, 1-5 (2020)
[2] EUA authorized serology test performance (2020), https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/eua-authorized-serology-test-performance (Accessed: 2020-09-16)
[3] Bond, K.; Nicholson, S.; Lim, S. M.; Karapanagiotidis, T.; Williams, E.; Johnson, D.; Hoang, T.; Sia, C.; Purcell, D.; Mordant, F.; Lewin, S. R.; Catton, M.; Subbarao, K.; Howden, B. P.; Williamson, D. A., Evaluation of serological tests for SARS-CoV-2: Implications for serology testing in a low-prevalence setting, J. Infect. Dis., 222, 8, 1280-1288 (2020)
[4] Bermingham, W. H.; Wilding, T.; Beck, S.; Huissoon, A., SARS-CoV-2 serology: Test, test, test, but interpret with caution!, Clin. Med., 20, 4, 365-368 (2020)
[5] Patrone, P. N.; Kearsley, A. J., Classification under uncertainty: data analysis for diagnostic antibody testing, Math. Med. Biol.: J. IMA, Article dqab007 pp. (2021) · Zbl 1472.92124
[6] Böttcher, L.; D’Orsogna, M. R.; Chou, T., A statistical model of COVID-19 testing in populations: effects of sampling bias and testing errors, Phil. Trans. R. Soc. A, 380, 2214, Article 20210121 pp. (2022)
[7] Meyer, B.; Torriani, G.; Yerly, S.; Mazza, L.; Calame, A.; Arm-Vernez, I.; Zimmer, G.; Agoritsas, T.; Stirnemann, J.; Spechbach, H.; Guessous, I.; Stringhini, S.; Pugin, J.; Roux-Lombard, P.; Fontao, L.; Siegrist, C.-A.; Eckerle, I.; Vuilleumier, N.; Kaiser, L.; for Emerging Viral Diseases, Geneva Center, Validation of a commercially available SARS-CoV-2 serological immunoassay, Clin. Microbiol. Infect. : Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis., 26, 10, 1386-1394 (2020), 32603801[pmid]
[8] Lee, N.; Jeong, S.; Park, M.-J.; Song, W., Comparison of three serological chemiluminescence immunoassays for SARS-CoV-2, and clinical significance of antibody index with disease severity, PLoS One, 16, 6, 1-13 (2021)
[9] Manthei, D. M.; Whalen, J. F.; Schroeder, L. F.; Sinay, A. M.; Li, S.-H.; Valdez, R.; Giacherio, D. A.; Gherasim, C., Differences in performance characteristics among four high-throughput assays for the detection of antibodies against SARS-CoV-2 using a common set of patient samples, Am. J. Clin. Path., 155, 2, 267-279 (2020)
[10] Theel, E. S.; Harring, J.; Hilgart, H.; Granger, D., Performance characteristics of four high-throughput immunoassays for detection of IgG antibodies against SARS-CoV-2, J. Clin. Microbiol., 58, 8, e01243-20 (2020), 32513859[pmid]
[11] Pisanic, N.; Randad, P. R.; Kruczynski, K.; Manabe, Y. C.; Thomas, D. L.; Pekosz, A.; Klein, S. L.; Betenbaugh, M. J.; Clarke, W. A.; Laeyendecker, O.; Caturegli, P. P.; Larman, H. B.; Detrick, B.; Fairley, J. K.; Sherman, A. C.; Rouphael, N.; Edupuganti, S.; Granger, D. A.; Granger, S. W.; Collins, M. H.; Heaney, C. D.; Loeffelholz, M. J., COVID-19 serology at population scale: SARS-CoV-2-specific antibody responses in saliva, J. Clin. Microbiol., 59, 1, e02204-20 (2020)
[12] Randad, P. R.; Pisanic, N.; Kruczynski, K.; Howard, T.; Rivera, M. G.; Spicer, K.; Antar, A. A.; Penson, T.; Thomas, D. L.; Pekosz, A.; Ndahiro, N.; Aliyu, L.; Betenbaugh, M. J.; Manley, H.; Detrick, B.; Katz, M.; Cosgrove, S.; Rock, C.; Zyskind, I.; Silverberg, J. I.; Rosenberg, A. Z.; Duggal, P.; Manabe, Y. C.; Collins, M. H.; Heaney, C. D., Durability of SARS-CoV-2-specific IgG responses in saliva for up to 8 months after infection (2021)
[13] Heaney, C. D.; Pisanic, N.; Randad, P. R.; Kruczynski, K.; Howard, T.; Zhu, X.; Littlefield, K.; Patel, E. U.; Shrestha, R.; Laeyendecker, O.; Shoham, S.; Sullivan, D.; Gebo, K.; Hanley, D.; Redd, A. D.; Quinn, T. C.; Casadevall, A.; Zenilman, J. M.; Pekosz, A.; Bloch, E. M.; Tobian, A. A., Comparative performance of multiplex salivary and commercially available serologic assays to detect SARS-CoV-2 IgG and neutralization titers, J. Clin. Virol., 145, Article 104997 pp. (2021)
[14] Patrone, P.; Kearsley, A., Minimizing uncertainty in prevalence estimates (2022)
[15] Lieb, E.; Loss, M.; Loss, M.; American Mathematical Society, K., Analysis, Crm Proceedings & Lecture Notes (2001), American Mathematical Society · Zbl 0966.26002
[16] Tao, T., (An Introduction to Measure Theory. An Introduction to Measure Theory, Graduate studies in mathematics (2011), American Mathematical Society) · Zbl 1231.28001
[17] Jones, F., (Lebesgue Integration on Euclidean Space. Lebesgue Integration on Euclidean Space, Jones and Bartlett books in mathematics (2001), Jones and Bartlett)
[18] Pishro-Nik, H., Introduction to Probability, Statistics, and Random Processes (2014), Kappa Research, LLC
[19] Rasmussen, C.; Williams, C., (Gaussian Processes for Machine Learning. Gaussian Processes for Machine Learning, Adaptative computation and machine learning series (2006), University Press Group Limited) · Zbl 1177.68165
[20] Klebaner, F., (Introduction to Stochastic Calculus with Applications. Introduction to Stochastic Calculus with Applications, Introduction to Stochastic Calculus with Applications (2005), Imperial College Press) · Zbl 1077.60001
[21] Clifford Cohen, A., Truncated and Censored Samples (2016), CRC Press · Zbl 0742.62027
[22] Tony, N. H.K., Censoring methodology, (Lovric, M., International Encyclopedia of Statistical Science (2011), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 221-224 · Zbl 1241.62001
[23] Florkowski, C. M., Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: communicating the performance of diagnostic tests, Clin. Biochemist. Rev., 29 Suppl 1, Suppl 1, S83-S87 (2008)
[24] Algaissi, A.; Alfaleh, M. A.; Hala, S.; Abujamel, T. S.; Alamri, S. S.; Almahboub, S. A.; Alluhaybi, K. A.; Hobani, H. I.; Alsulaiman, R. M.; AlHarbi, R. H.; ElAssouli, M.-Z.; Alhabbab, R. Y.; AlSaieedi, A. A.; Abdulaal, W. H.; Al-Somali, A. A.; Alofi, F. S.; Khogeer, A. A.; Alkayyal, A. A.; Mahmoud, A. B.; Almontashiri, N. A.M.; Pain, A.; Hashem, A. M., SARS-CoV-2 S1 and N-based serological assays reveal rapid seroconversion and induction of specific antibody response in COVID-19 patients, Sci. Rep., 10, 1, 16561 (2020)
[25] L. Grzelak, S. Temmam, C. Planchais, C. Demeret, L. Tondeur, C. Huon, F. Guivel-Benhassine, I. Staropoli, M. Chazal, J. Dufloo, D. Planas, J. Buchrieser, M.M. Rajah, R. Robinot, F. Porrot, M. Albert, K.-Y. Chen, B. Crescenzo-Chaigne, F. Donati, F. Anna, P. Souque, M. Gransagne, J. Bellalou, M. Nowakowski, M. Backovic, L. Bouadma, L. Le Fevre, Q. Le Hingrat, D. Descamps, A. Pourbaix, C. Laouénan, J. Ghosn, Y. Yazdanpanah, C. Besombes, N. Jolly, S. Pellerin-Fernandes, O. Cheny, M.-N. Ungeheuer, G. Mellon, P. Morel, S. Rolland, F.A. Rey, S. Behillil, V. Enouf, A. Lemaitre, M.-A. Créach, S. Petres, N. Escriou, P. Charneau, A. Fontanet, B. Hoen, T. Bruel, M. Eloit, H. Mouquet, O. Schwartz, S. van der Werf, A comparison of four serological assays for detecting anti-SARS-CoV-2 antibodies in human serum samples from different populations, 12 (559) 2020. http://dx.doi.org/10.1126/scitranslmed.abc3103. · Zbl 0714.65036
[26] Hachim, A.; Kavian, N.; Cohen, C. A.; Chin, A. W.H.; Chu, D. K.W.; Mok, C. K.P.; Tsang, O. T.Y.; Yeung, Y. C.; Perera, R. A.P. M.; Poon, L. L.M.; Peiris, J. S.M.; Valkenburg, S. A., ORF8 and ORF3b antibodies are accurate serological markers of early and late SARS-CoV-2 infection, Nat. Immunol., 21, 10, 1293-1301 (2020)
[27] Nocedal, J.; Wright, S., (Numerical Optimization. Numerical Optimization, Springer Series in Operations Research and Financial Engineering (2006), Springer New York) · Zbl 1104.65059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.