×

Efficient scalarization in multiobjective optimal control of a nonsmooth PDE. (English) Zbl 1502.49013

Summary: This work deals with the efficient numerical characterization of Pareto stationary fronts for multiobjective optimal control problems with a moderate number of cost functionals and a mildly nonsmooth, elliptic, semilinear PDE-constraint. When “ample” controls are considered, strong stationarity conditions that can be used to numerically characterize the Pareto stationary fronts are known for our problem. We show that for finite dimensional controls, a sufficient adjoint-based stationarity system remains obtainable. It turns out that these stationarity conditions remain useful when numerically characterizing the fronts, because they correspond to strong stationarity systems for problems obtained by application of weighted-sum and reference point techniques to the multiobjective problem. We compare the performance of both scalarization techniques using quantifiable measures for the approximation quality. The subproblems of either method are solved with a line-search globalized pseudo-semismooth Newton method that appears to remove the degenerate behavior of the local version of the method employed previously. We apply a matrix-free, iterative approach to deal with the memory and complexity requirements when solving the subproblems of the reference point method and compare several preconditioning approaches.

MSC:

49J52 Nonsmooth analysis
49J20 Existence theories for optimal control problems involving partial differential equations
49M15 Newton-type methods

Software:

Python; FEniCS; SciPy
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alnaes, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The fenics project version 1.5. Arch. Numer. Softw. 3(100), 9-23. doi:10.11588/ans.2015.100.20553
[2] Banholzer, S.: POD-based bicriterial optimal control of convection-diffusion equations. Master’s thesis, Universität, Konstanz (2017)
[3] Banholzer, S.: ROM-based multiobjective optimization with PDE constraints. Ph.D. thesis, Universität Konstanz, Konstanz (2021)
[4] Banholzer, S., Volkwein, S.: Hierarchical convex multiobjective optimization by the Euclidean reference point method (2019)
[5] Bernreuther, M., Müller, G., Volkwein, S.: 1 reduced basis model order reduction in optimal control of a nonsmooth semilinear elliptic PDE. In: Optimization and Control for Partial Differential Equations, pp. 1-32. De Gruyter (2022) · Zbl 1490.35153
[6] Christof, C.; Meyer, C.; Walther, S.; Clason, C., Optimal control of a non-smooth semilinear elliptic equation, Math. Control Relat. Fields, 8, 1, 247-276 (2018) · Zbl 1407.49026
[7] Christof, C., Müller, G.: Multiobjective optimal control of a non-smooth semilinear elliptic partial differential equation 27, S13. doi:10.1051/cocv/2020060 · Zbl 1468.35048
[8] Ehrgott, M.: Multicriteria Optimization, second edn. Springer, Berlin · Zbl 1132.90001
[9] Gerdts, M.; Horn, S.; Kimmerle, SJ, Line search globalization of a semismooth Newton method for operator equations in Hilbert spaces with applications in optimal control, J. Ind. Manag. Optim., 13, 1, 47-62 (2017) · Zbl 1368.49005
[10] Gilbarg, D.; Trudinger, NS, Elliptic Partial Differential Equations of Second Order (2001), Berlin: Springer, Berlin · Zbl 0361.35003
[11] Ito, K.; Kunisch, K., On a semi-smooth Newton method and its globalization, Math. Program., 118, 2, 347-370 (2007) · Zbl 1164.65018
[12] Khoromskij, BN; Wittum, G., Numerical Solution of Elliptic Differential Equations by Reduction to the Interface (2004), Berlin: Springer, Berlin · Zbl 1043.65128
[13] Kikuchi, F.; Nakazato, K.; Ushijima, T., Finite element approximation of a nonlinear eigenvalue problem related to MHD equilibria, Jpn. J. Appl. Math., 1, 2, 369-403 (1984) · Zbl 0634.76117
[14] Miettinen, K., Nonlinear multiobjective optimization (1998), US: Springer, US
[15] Mueller-Gritschneder, D.; Graeb, H.; Schlichtmann, U., A successive approach to compute the bounded pareto front of practical multiobjective optimization problems, SIAM J. Optim., 20, 2, 915-934 (2009) · Zbl 1191.90060
[16] Rappaz, J., Approximation of a nondifferentiable nonlinear problem related to MHD equilibria, Numer. Math., 45, 1, 117-133 (1984) · Zbl 0527.65073
[17] Romaus, C., Bocker, J., Witting, K., Seifried, A., Znamenshchykov, O.: Optimal energy management for a hybrid energy storage system combining batteries and double layer capacitors. In: 2009 IEEE Energy Conversion Congress and Exposition. IEEE (2009)
[18] Saad, Y.: Iterative Methods for Sparse Linear Systems, 2 edn. SIAM · Zbl 1031.65046
[19] Temam, R., A non-linear eigenvalue problem: the shape at equilibrium of a confined plasma, Arch. Ration. Mech. Anal., 60, 1, 51-73 (1975) · Zbl 0328.35069
[20] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A.P., Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C.N., Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D.A., Hagen, D.R., Pasechnik, D.V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G.A., Ingold, G.L., Allen, G.E., Lee, G.R., Audren, H., Probst, I., Dietrich, J.P., Silterra, J., Webber, J.T., Slavi c, J., Nothman, J., Buchner, J., Kulick, J., Schönberger, J.L., de Miranda Cardoso, J.V., Reimer, J., Harrington, J., Rodríguez, J.L.C., Nunez-Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M., Newville, M., Kümmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N.J., Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb, P.A., Lee, P., McGibbon, R.T., Feldbauer, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T., Pingel, T.J., Robitaille, T.P., Spura, T., Jones, T.R., Cera, T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U., Halchenko, Y.O., and, Y.V.B.: SciPy 1.0: fundamental algorithms for scientific computing in python. Nature Methods 17(3), 261-272 (2020). doi:10.1038/s41592-019-0686-2
[21] Xin, J., An Introduction to Fronts in Random Media (2009), New York: Springer, New York · Zbl 1188.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.