Burgos, C.; Cortés, J.-C.; Villafuerte, L.; Villanueva, R.-J. Mean square convergent numerical solutions of random fractional differential equations: approximations of moments and density. (English) Zbl 1503.65009 J. Comput. Appl. Math. 378, Article ID 112925, 13 p. (2020). Summary: A fractional forward Euler-like method is developed to solve initial value problems with uncertainties formulated via the Caputo fractional derivative. The analysis is conducted by using the so-called random mean square calculus. Under mild conditions on the data, the mean square convergence of the numerical method is proved. This type of stochastic convergence guarantees the approximations of the mean and the variance of the solution stochastic process, computed via the aforementioned numerical scheme, will converge to their corresponding exact values. Furthermore, from this probability information, we calculate reliable approximations to the first probability density function of the solution by taking advantage of the Maximum Entropy Principle. The theoretical analysis is illustrated by two examples. Cited in 10 Documents MSC: 65C30 Numerical solutions to stochastic differential and integral equations 34A08 Fractional ordinary differential equations 60H10 Stochastic ordinary differential equations (aspects of stochastic analysis) 60H25 Random operators and equations (aspects of stochastic analysis) 65L05 Numerical methods for initial value problems involving ordinary differential equations Keywords:fractional differential equations with randomness; random mean square calculus; random mean square Caputo fractional derivative; random numerics; maximum entropy principle PDF BibTeX XML Cite \textit{C. Burgos} et al., J. Comput. Appl. Math. 378, Article ID 112925, 13 p. (2020; Zbl 1503.65009) Full Text: DOI Link References: [1] Diethelm, K., The Analysis of Fractional Differential Equations (2004), Springer: Springer Germany [2] Podlubny, L., (Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, vol. 198 (1998), Academic Press: Academic Press New York) · Zbl 0924.34008 [3] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Elsevier Science: Elsevier Science The Netherlands · Zbl 1092.45003 [4] Baleanu, L.; Diethelm, K.; Scalas, E.; Trujillo, J. J., (Fractional Calculus: Models And Numerical Methods. Fractional Calculus: Models And Numerical Methods, Complexity, Nonlinearity and Chaos, vol. 5 (2016), World Scientific: World Scientific Singap0re) · Zbl 1347.26006 [5] Santos, L. T.; Dorini, F. A.; Cunha, M. C.C., The probability density function to the random linear transport equation, Appl. Math. Comput., 216, 5, 1524-1530 (2010) · Zbl 1201.65014 [6] Nouri, K.; Ranjbar, H., Mean square convergence of the numerical solution of random differential equations, Mediterr. J. Math., 1-18 (2014) [7] Slama, H.; El-Bedwhey, N.; El-Depsy, A.; Selim, M. M., Solution of the finite Milne problem in stochastic media with RVT Technique, Eur. Phys. J. Plus, 132, 505 (2017) [8] Debbouche, A.; Nieto, J., Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls, Appl. Math. Comput., 245, 74-85 (2014) · Zbl 1335.34014 [9] Mourad, K.; Debbouche, A., Complete controllability of nonlocal fractional stochastic differential evolution equations with Poisson jumps in Hilbert spaces, Int. J. Adv. Appl. Math. Mech., 3, 1, 41-48 (2015) · Zbl 1359.93052 [10] González-Parra, G.; Chen-Charpentier, B. M.; Arenas, A. J., Polynomial Chaos for random fractional order differential equations, Appl. Math. Comput., 226, 123-130 (2014) · Zbl 1354.34017 [11] Golmankhaneh, A. K.; Porghoveh, N. A.; Baleanu, D., Mean square solutions of second-order random differential equations by using homotopy analysis method, Rom. Rep. Phys., 65, 350-362 (2013) [12] Golmankhaneh, A. K.; Arefi, R.; Baleanu, D., Synchronization in a nonidentical fractional order of a proposed modified system, J. Vib. Control, 21, 1154-1161 (2015) · Zbl 1349.34201 [13] Lupulescu, V.; O’Reagan, D.; Rahman, G.u., Existence results for random fractional differential equations, Opuscula Math., 34, 4, 813-825 (2014) · Zbl 1341.60055 [14] Lupulescu, V.; Ntouyas, K. N., Random fractional differential equations, Int. Electron. J. Pure Appl. Math., 4, 2, 119-136 (2012) · Zbl 1399.60116 [15] Acedo, L.; Burgos, C.; Cortés, J. C.; Villanueva, R. J., Probabilistic prediction of outbreaks of meningococcus W-135 infections over the next few years in Spain, Physica A, 486, 106-117 (2017) · Zbl 1499.92086 [16] Khan, Y.; Wu, Q.; Faraz, N.; Yildirim, A.; Madani, M., New fractional analytical approach via a modified Riemann-Liouville derivative, Appl. Math. Lett., 25, 1729-1733 (2012) [17] Khan, Y.; Fardi, M.; Sayevand, K.; Ghasemi, M., Solution of nonlinear fractional differential equations using an efficient approach, Neural Comput. Appl., 24, 187-192 (2014) [18] Burgos, C.; Cortés, J. C.; Villafuerte, L.; Villanueva, R. J., Extending the deterministic Riemann-Liouville and Caputo operators to the random framework: A mean square approach with applications to solve random fractional differential equations, Chaos Solitons Fractals, 102, 305-318 (2017) · Zbl 1374.34317 [19] Soong, T. T., Random Differential Equations in Science and Engineering (1973), Academic Press: Academic Press New York · Zbl 0348.60081 [20] Michalowicz, J. V.; Nichols, J. M.; Bucholtz, F., Handbook of Differential Entropy (2013), Chapman and Hall/CRC [21] Casella, G.; Berger, R., (Statistical Inference. Statistical Inference, Duxbury Advanced Series (2002), Brooks Cole: Brooks Cole New York) · Zbl 0699.62001 [22] Papoulis, A.; Pillai, S. U., Probability, Random Variables and Stochastic Processes (2002), McGraw-Hill: McGraw-Hill New York [23] Burgos, C.; Cortés, J. C.; Villafuerte, L.; Villanueva, R. J., Mean square calculus and random linear fractional differential equations: Theory and applications, Appl. Math. Nonlinear Sci., 2, 2, 317-328 (2017) · Zbl 1375.35640 [24] Khan, Y.; Ali Beik, S. P.; Sayevand, K.; Shayganmanesh, A., A numerical scheme for solving differential equations with space and time-fractional coordinate derivatives, Quaest. Math., 38, 1, 41-55 (2015) · Zbl 1426.35225 [25] Khan, Y.; Fardi, M.; Sayevand, K.; Ghasemi, M., Solution of nonlinear fractional differential equations using an efficient approach, Neural Comput. Appl., 24, 1, 187-192 (2014) [26] Li, C.; Zeng, F., Numerical Methods for Fractional Calculus, Vol. 24 (2015), CRC Press This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.