×

A novel metamaterial with individually adjustable and sign-switchable Poisson’s ratio. (English) Zbl 1503.74022

Summary: In recent studies, some structures with alternating positive and negative Poisson’s ratio have been proposed, which provides a new direction for structural design. The novelty of this paper is that the proposed structure can not only have different Poisson’s ratio signs under tension and compression, but also adjust the Poisson ratio under tension or compression separately. The Poisson’s ratio of the proposed cell structure under tension and compression is studied by FEM simulation and experiments. The results show that the Poisson’s ratio under tension and compression has the opposite sign, and the value of the Poisson’s ratio under tension or compression can be changed separately by adjusting the geometric parameters. The unique deformation law of the proposed structure does not depend on the material properties. 2D and 3D cellular structures composed of 2D unit cell arrays maintain these unique features. The proposed structure makes use of the self-contact effect, which provides a fresh perspective for the adjustability of the structural Poisson’s ratio and structural design.

MSC:

74E30 Composite and mixture properties
74S05 Finite element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arranz, S.; Sohouli, A.; Suleman, A., Buckling optimization of variable stiffness composite panels for curvilinear fibers and grid stiffeners, Journal of Composites Science, 5, 12, 324 (2021)
[2] Bilski, M.; Wojciechowski, K. W., Tailoring Poisson’s ratio by introducing auxetic layers, Phys. Status Solidi, 253, 7, 1318-1323 (2016)
[3] Bozorgmehri, B.; Yu, X.; Matikainen, M. K., A study of contact methods in the application of large deformation dynamics in self-contact beam, Nonlinear Dynam., 103, 1, 1-36 (2021)
[4] Chamekh, M.; Mani-Aouadi, S.; Moakher, M., Stability of elastic rods with self-contact, Comput. Methods Appl. Mech. Eng., 279, sep.1, 227-246 (2014) · Zbl 1423.74461
[5] Chen, Y.; Li, T.; Scarpa, F., Lattice metamaterials with mechanically tunable Poisson’s ratio for vibration control, Phys. Rev. Appl., 7, 2, Article 024012 pp. (2017)
[6] Chen, Z.; Li, Y.; Li, Q. M., Hydrogel-driven origami metamaterials for tunable swelling behavior, Mater. Des., 207, 5, Article 109819 pp. (2021)
[7] Chen, X.; Fu, M. H.; Li, W. H., An unusual 3D metamaterial with zero Poisson’s ratio in partial directions, Adv. Eng. Mater., 23, 4, Article 2001491 pp. (2021)
[8] Choi, J. B.; Lakes, R. S., Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: experiment and analysis, Int. J. Fract., 80, 1, 73-83 (1996)
[9] Clausen, A.; Wang, F.; Jensen, J. S.; Sigmund, O.; Lewis, J. A., Topology optimized architectures with programmable Poisson’s ratio over large deformations, Adv. Mater., 27, 5523-5527 (2015)
[10] Cui, S.; Gong, B.; Ding, Q., Mechanical metamaterials foams with tunable negative Poisson’s ratio for enhanced energy absorption and damage resistance, Materials, 11, 10, 1869 (2018)
[11] Dong, L.; Deshpande, V.; Wadley, H., Mechanical response of Ti-6Al-4V octet-truss lattice structures, Int. J. Solid Struct., 6061, 107-124 (2015)
[12] Dong, Li; Yin, Jianhua; Dong, Liang; Lakes, R. S., Numerical analysis on mechanical behaviors of hierarchical cellular structures with negative Poisson’s ratio, Smart Mater. Struct., 26, Article 025014 pp. (2017)
[13] Duncan, O.; Alderson, A.; Allen, T., Fabrication, characterisation and analytical modelling of gradient auxetic closed cell foam, Smart Mater. Struct., 30, 3, Article 035014 pp. (2021)
[14] Falco, O.; Mayugo, J. A.; Lopes, C. S., Variable-stiffness composite panels: as-manufactured modeling and its influence on the failure behavior, Composites Part B, 56, jan, 660-669 (2014)
[15] Farzaneh, A.; Pawar, N.; Portela, C. M., Sequential metamaterials with alternating Poisson’s ratios, Nat. Commun., 13, 1, 1-9 (2022)
[16] Feng, J.; Liu, B.; Lin, Z., Isotropic octet-truss lattice structure design and anisotropy control strategies for implant application, Mater. Des., 203, Article 109595 pp. (2021)
[17] Gao, D.; Wang, B.; Gao, H., Strain rate effect on mechanical properties of the 3D-printed metamaterials foams with tunable negative Poisson’s ratio, Front. Mater., 8, 248 (2021)
[18] Gerard, N. J.; Oudich, M.; Xu, Z., Three-dimensional trampolinelike behavior in an ultralight elastic metamaterial, Phys. Rev. Appl., 16, 2 (2021)
[19] Ghaedizadeh, A.; Shen, J.; Ren, X., Tuning the performance of metallic auxetic metamaterials by using buckling and plasticity, Materials, 9, 1, 54 (2016)
[20] Grima, J. N.; Gatt, R.; Zammit, V.; Williams, J. J.; Evans, K. E.; Alderson, A.; Walton, R. I., Natrolite: a zeolite with negative Poisson’s ratios, J. Appl. Phys., 101, Article 086102 pp. (2007)
[21] Grima, J. N.; Caruana-Gauci, R.; Dudek, M. R.; Wojciechowski, K. W.; Gatt, R., Smart metamaterials with tunable auxetic and other properties, Smart Mater. Struct., 22, Article 084016 pp. (2013)
[22] Imbalzano, G.; Tran, P.; Ngo, T. D., A numerical study of auxetic composite panels under blast loadings, Compos. Struct., 135, 339-352 (2016)
[23] Jha, A.; Dayyani, I., Shape optimisation and buckling analysis of large strain zero Poisson’s ratio fish-cells metamaterial for morphing structures, Compos. Struct., 268, Article 113995 pp. (2021)
[24] Jiang, J. W.; Park, H. S., Negative Poisson’s ratio in single-layer graphene ribbons, Nano Lett., 16, 4, 2657-2662 (2016)
[25] Kamrava, S.; Mousanezhad, D.; Ebrahimi, H., Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties, Sci. Rep., 7, 1, 1-9 (2017)
[26] Kashani, M. H.; Alavijeh, H. S.; Akbarshahi, H., Bitubular square tubes with different arrangements under quasi-static axial compression loading, Mater. Des., 51, 1095-1103 (2013)
[27] Kim, J.; Lee, D. Y.; Kim, S. R., A self-deployable origami structure with locking mechanism induced by buckling effect, IEEE Int. Conf. Robotics Automation, 3166-3171 (2015)
[28] Kuder, I. K.; Arrieta, A. F.; Raither, W. E., Variable stiffness material and structural concepts for morphing applications, Prog. Aero. Sci., 63, nov, 33-55 (2013)
[29] Lakes, R. S., Negative Poisson’s ratio materials, Science, 238, 551 (1987)
[30] Lakes, R. S., Materials with structural hierarchy, Nature, 361, 511-515 (1993)
[31] Lakes, R. S., Advances in negative Poisson’s ratio materials, Adv. Mater., 5, 4, 293-296 (2010)
[32] Le, D. H.; Xu, Y.; Tentzeris, M. M., Transformation from 2D meta-pixel to 3D meta-pixel using auxetic kirigami for programmable multifunctional electromagnetic response, Extreme Mech. Lett., 36, Article 100670 pp. (2020)
[33] Li, Y.; Zeng, C., Room-temperature, near-instantaneous fabrication of auxetic materials with constant Poisson’s ratio over large deformation, Adv. Mater., 28, 2822-2826 (2016)
[34] Li, D.; Dong, L.; Lakes, R. S., A bi-material structure with Poisson’s ratio tunable from positive to negative via temperature control, Mater. Lett., 164, 456-459 (2016)
[35] Li, D.; Ma, J.; Dong, L.; Lakes, R. S., Stiff square structure with a negative Poisson’s ratio, Mater. Lett., 188, 149-151 (2017)
[36] Li, D.; Ma, J.; Dong, L.; Lakes, R. S., Three-Dimensional stiff cellular structures with negative Poisson’s ratio, Phys. Status Solidi B, 254, Article 1600785 pp. (2017)
[37] Li, D.; Yin, J.; Dong, L.; Lakes, R. S., Strong re-entrant cellular structures with negative Poisson’s ratio, J. Mater. Sci., 53, 3493-3499 (2018)
[38] Li, D.; Yin, J.; Dong, L., Numerical analysis of a two‐dimensional open cell topology with tunable Poisson’s ratio from positive to negative, Phys. Status Solidi Rapid Res. Lett., 12, 3, Article 1700374 pp. (2018)
[39] Li, D.; Gao, R.; Dong, L., A novel 3D re-entrant unit cell structure with negative Poisson’s ratio and tunable stiffness, Smart Mater. Struct., 29, 4, Article 045015 pp. (2020)
[40] Lin, F.; Xiang, Y.; Shen, H., Tunable positive/negative Young’s modulus in graphene‐based metamaterials, Adv. Theory Simul., 4, 2, Article 2000130 pp. (2021)
[41] Liu, J.; Zhang, Y., A mechanics model of soft network materials with periodic lattices of arbitrarily shaped filamentary microstructures for tunable Poisson’s ratios, J. Appl. Mech., 85, 5, Article 051003 pp. (2018)
[42] Liu, K.; Tachi, T.; Paulino, G. H., Bio-inspired origami metamaterials with metastable phases through mechanical phase transitions, J. Appl. Mech., 88, 9, 1-13 (2021)
[43] Luo, H. C.; Ren, X.; Zhang, Y., Mechanical properties of foam-filled hexagonal and re-entrant honeycombs under uniaxial compression, Compos. Struct., 280, 2, Article 114922 pp. (2022)
[44] Lv, W.; Dong, L.; Liang, D., Study on mechanical properties of a hierarchical octet-truss structure, Compos. Struct., 249, Article 112640 pp. (2020)
[45] Lv, W.; Li, D.; Dong, L., Study on blast resistance of a composite sandwich panel with isotropic foam core with negative Poisson’s ratio, Int. J. Mech. Sci., 191, 7, Article 106105 pp. (2021)
[46] Ma, M.; Zhou, X.; Liu, Q., Negative compressibility in hexagonal and trigonal models constructed by hinging wine‐rack mechanism, Phys. Status Solidi, 258, 5, Article 2000568 pp. (2021)
[47] Meng, F.; Chen, S.; Zhang, W., Negative Poisson’s ratio in graphene Miura origami, Mech. Mater., 155, 7, Article 103774 pp. (2021)
[48] Meza, L. R.; Das, S.; Greer, J. R., Strong, lightweight, and recoverable three-dimensional ceramic nanolattices, Science, 345, 6202, 1322-1326 (2014)
[49] Ni, X.; Guo, X.; Li, J., 2D mechanical metamaterials with widely tunable unusual modes of thermal expansion, Adv. Mater., 31, 48, Article 1905405 pp. (2019)
[50] Park, H.; Kwon, H.; An, Y., Mechanical metamaterials with thermoresponsive switching between positive and negative Poisson’s ratios, Phys. Status Solidi Rapid Res. Lett., 12, Article 1800040 pp. (2018)
[51] Reid, D. R.; Pashine, N.; Wozniak, J. M., Auxetic metamaterials from disordered networks, Proc. Natl. Acad. Sci. USA, 115, 7, E1384-E1390 (2018)
[52] Ren, X.; Shen, J.; Ghaedizadeh, A., Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties, Smart Mater. Struct., 24, 9, Article 095016 pp. (2015)
[53] Ren, X.; Shen, J.; Tran, P.; Ngo, T. D.; Xie, Y. M., Design and characterization of a tuneable 3D buckling-induced auxetic metamaterial, Mater. Des., 139, 336-342 (2018)
[54] Rohan, E.; Heczko, J., Homogenization and numerical modelling of poroelastic materials with self-contact in the microstructure, Comput. Struct., 230, Article 106086 pp. (2020)
[55] Siddorn, M.; Coudert, F. X.; Evans, K. E., A systematic typology for negative Poisson’s ratio materials and the prediction of complete auxeticity in pure silica zeolite JST, Phys. Chem. Chem. Phys., 17, 27, 17927-17933 (2015)
[56] Silverberg, J. L.; Evans, A. A.; Mcleod, L., Using origami design principles to fold reprogrammable mechanical metamaterials, Science, 345, 6197, 647 (2014)
[57] Soman, P.; Lee, J. W.; Phadke, A., Spatial tuning of negative and positive Poisson’s ratio in a multi-layer scaffold, Acta Biomater., 8, 7, 2587-2594 (2012)
[58] Tang, Y.; Yin, J., Design of cut unit geometry in hierarchical kirigami-based auxetic metamaterials for high stretchability and compressibility, Extreme Mech. Lett., 12, 77-85 (2017)
[59] Wang, F., Systematic design of 3D auxetic lattice materials with programmable Poisson’s ratio for finite strains, J. Mech. Phys. Solid., 114, 303-318 (2018)
[60] Wang, L.; Wang, B.; Zhu, S., Latitude-and-longitude-inspired three-dimensional auxetic metamaterials, Extreme Mech. Lett., 42, 17, 101142 (2020)
[61] Wang, X.; Wu, L.; Fang, B., Layer jamming-based soft robotic hand with variable stiffness for compliant and effective grasping, Cognitive Computation and Systems, 2, 2, 44-49 (2020)
[62] Yang, S.; Qi, C.; Wang, D., A comparative study of ballistic resistance of sandwich panels with aluminum foam and auxetic honeycomb cores, Adv. Mech. Eng., 5, Article 589216 pp. (2013)
[63] Yang, N.; Deng, Y.; Zhao, S., Mechanical metamaterials with discontinuous and tension/compression-dependent positive/negative Poisson’s ratio, Adv. Eng. Mater., Article 2100787 pp. (2021)
[64] Zhang, Y.; Lu, M., A review of recent advancements in soft and flexible robots for medical applications, Int. J. Med. Robot. Comput. Assist. Surg., 16, 3, Article e2096 pp. (2020)
[65] Zhang, D.; Xiao, J.; Yu, W., Hierarchical metal/polymer metamaterials of tunable negative Poisson’s ratio fabricated by initiator-integrated 3D printing (i3DP), Nanotechnology, 29, 50, Article 505704 pp. (2018)
[66] Zhang, C.; Yang, Q.; Tao, R., Origami-based metamaterial with switchable abnormal expansion function, Smart Mater. Struct., 30, 7, Article 075004 pp. (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.