×

Quasi-simultaneous coupling methods for partitioned problems in computational hemodynamics. (English) Zbl 1503.76067

Summary: The paper describes the numerical coupling challenges in multiphysics problems like the simulation of blood flow in compliant arteries. In addition to an iterative coupling between the fluid flow and elastic vessel walls, i.e. fluid-structure interaction, also the coupling between a detailed 3D local (arterial) flow model and a more global 0D model (representing a global circulation) is analyzed. Most of the coupling analysis is formulated in the more abstract setting of electrical-network models. Both, weak (segregated) and strong (monolithic) coupling approaches are studied, and their numerical stability limitations are discussed. Being a hybrid combination, the quasi-simultaneous coupling method, developed for partitioned problems in aerodynamics, is shown to be a robust and flexible approach for hemodynamic applications too.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
76Z05 Physiological flows
76D05 Navier-Stokes equations for incompressible viscous fluids
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
92C10 Biomechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ascher, U. M.; Ruuth, S. J.; Spiteri, R. J., Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math., 25, 2-3, 151-167 (1997) · Zbl 0896.65061
[2] Avanzolini, G.; Barbini, P.; Cappello, A.; Cevenini, G., CADCS simulation of the closed-loop cardiovascular system, Int. J. Bio-Med. Comput., 22, 1, 39-49 (1988)
[3] Badia, S.; Nobile, F.; Vergara, C., Fluid-structure partitioned procedures based on Robin transmission conditions, J. Comput. Phys., 227, 14, 7027-7051 (2008) · Zbl 1140.74010
[4] Bazilevs, Y.; Hsu, M.-C.; Zhang, Y.; Wang, W.; Liang, X.; Kvamsdal, T.; Brekken, R.; Isaksen, J. G., A fully-coupled fluid-structure interaction simulation of cerebral aneurysms, Comput. Mech., 46, 1, 3-16 (2010) · Zbl 1301.92014
[5] Benedikt, M.; Watzenig, D.; Hofer, A., Modelling and analysis of the non-iterative coupling process for co-simulation, Math. Comput. Model. Dyn. Syst., 19, 5, 451-470 (2013) · Zbl 1305.93025
[6] Bessel, F. W., Untersuchungen über die Länge des einfachen Secundendpendels (1828), Königliche Akademie der Wissenschaften zu Berlin
[7] Bijleveld, H. A.; Veldman, A. E.P., A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows, J. Phys. Conf. Ser., 555, 1, Article 012010 pp. (2014)
[8] Bijleveld, H. A.; Veldman, A. E.P., Solving 2d unsteady turbulent boundary layer flows with a quasi-simultaneous interaction method, (Wind Energy-Impact of Turbulence (2014), Springer), 185-190
[9] Brennen, C. E., A review of added mass and fluid inertial forces (1982), Naval Civil Engineering Laboratory: Naval Civil Engineering Laboratory Port Hueneme, Ca, Technical Report CR 82.010
[10] van Brummelen, E. H., Added mass effects of compressible and incompressible flows in fluid-structure interaction, J. Appl. Mech., 76, 2, Article 021206 pp. (2009)
[11] Burman, E.; Fernández, M. A., Explicit strategies for incompressible fluid-structure interaction problems: Nitsche type mortaring versus Robin-Robin coupling, Int. J. Numer. Methods Eng., 97, 10, 739-758 (2014) · Zbl 1352.74104
[12] Causin, P.; Gerbau, J. F.; Nobile, F., Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Comput. Methods Appl. Mech. Eng., 194, 4506-4527 (2005) · Zbl 1101.74027
[13] Cebeci, T., An Engineering Approach to the Calculation of Aerodynamic Flows (1999), Springer · Zbl 0959.76001
[14] Cebral, J. R.; Yim, P. J.; Löhner, R.; Soto, O.; Choyke, P. L., Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging, Acad. Radiol., 9, 11, 1286-1299 (2002)
[15] Cheny, Y.; Botella, O., The LS-STAG method; a new immersed boundary/level-set method for the computation of incompressible viscous flows in complex moving geometries with good conservation properties, J. Comput. Phys., 229, 1043-1076 (2010) · Zbl 1329.76252
[16] ComFLOW website. URL
[17] De Pater, L.; Van den Berg, J. W., An electrical analogue of the entire human circulatory system, Med. Electron. Biol. Eng., 2, 2, 161-166 (1964)
[18] Degroote, J., Partitioned simulation of fluid-structure interaction, Arch. Comput. Methods Eng., 20, 3, 185-238 (2013) · Zbl 1354.74066
[19] Degroote, J.; Bathe, K.-J.; Vierendeels, J., Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction, Comput. Struct., 87, 11, 793-801 (2009)
[20] Driessen, N. J.B.; Mol, A.; Bouten, C. V.C.; Baaijens, F. P.T., Modeling the mechanics of tissue-engineered human heart valve leaflets, J. Biomech., 40, 2, 325-334 (2007)
[21] Dröge, M.; Verstappen, R., A new symmetry-preserving Cartesian-grid method for computing flow past arbitrarily shaped objects, Int. J. Numer. Methods Fluids, 47, 979-985 (2005) · Zbl 1134.76039
[22] Fekken, G., Numerical Simulation of Free-Surface Flow with Moving Objects (2004), University of Groningen: University of Groningen The Netherlands, PhD Thesis
[23] Fekken, G.; Veldman, A. E.P.; Buchner, B., Simulation of green-water loading using the Navier-Stokes equations, (Piquet, J., Proceedings 7th International Conference on Numerical Ship Hydrodynmaics. Proceedings 7th International Conference on Numerical Ship Hydrodynmaics, Nantes, France, July 19-22 (1999)), 6.3-1-6.3-12
[24] Felippa, C. A.; Park, K. C.; Farhat, C., Partitioned analysis of coupled mechanical systems, Comput. Methods Appl. Mech. Eng., 190, 24-25, 3247-3270 (2001) · Zbl 0985.76075
[25] Fernández, M. A., Incremental displacement-correction schemes for incompressible fluid-structure interaction, Numer. Math., 123, 1, 21-65 (2013) · Zbl 1331.76068
[26] Fernández, M. A.; Gerbeau, J.-F.; Grandmont, C., A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid, Int. J. Numer. Methods Eng., 69, 4, 794-821 (2007) · Zbl 1194.74393
[27] Fernández, M. A.; Mullaert, J.; Vidrascu, M., Generalized Robin-Neumann explicit coupling schemes for incompressible fluid-structure interaction: stability analysis and numerics, Int. J. Numer. Methods Eng., 101, 3, 199-229 (2015) · Zbl 1352.76048
[28] Fletcher, C. A.J., Computational Techniques for Fluid Dynamics, Specific Techniques for Different Flow Categories, vol. 2 (1988), Springer-Verlag: Springer-Verlag Berlin · Zbl 0706.76001
[29] Formaggia, L.; Gerbeau, J.-F.; Nobile, F.; Quarteroni, A., On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels, Comput. Methods Appl. Mech. Eng., 191, 6-7, 561-582 (2001) · Zbl 1007.74035
[30] Formaggia, L.; Moura, A.; Nobile, F., On the stability of the coupling of 3d and 1d fluid-structure interaction models for blood flow simulations, ESAIM: Math. Model. Numer. Anal., 41, 4, 743-769 (2007) · Zbl 1139.92009
[31] Formaggia, L.; Quarteroni, A.; Vergara, C., On the physical consistency between three-dimensional and one-dimensional models in haemodynamics, J. Comput. Phys., 244, 97-112 (2013) · Zbl 1377.76042
[32] Formaggia, L.; Veneziani, A., Reduced and Multiscale Models for the Human Cardiovascular System, Lecture Notes VKI Lecture Series, vol. 7 (2003)
[33] Forster, C.; Wall, W. A.; Ramm, E., Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows, Comput. Methods Appl. Mech. Eng., 196, 1278-1293 (2007) · Zbl 1173.74418
[34] Fung, Y. C., Biomechanics, Circulation (1997), Springer
[35] Gatzhammer, B.; Mehl, M.; Neckel, T., A coupling environment for partitioned multiphysics simulations applied to fluid-structure interaction scenarios, Proc. Comput. Sci., 1, 1, 681-689 (2010)
[36] Gerbeau, J.-F.; Vidrascu, M., A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows, ESAIM: Math. Model. Numer. Anal., 37, 4, 631-647 (2003) · Zbl 1070.74047
[37] Gerrits, J.; Veldman, A. E.P., Dynamics of liquid-filled spacecraft, J. Eng. Math., 45, 21-38 (2003) · Zbl 1112.76337
[38] Gigante, G.; Vergara, C., On the choice of interface parameters in Robin-Robin loosely coupled schemes for fluid-structure interaction, Fluids, 6, 6, 213 (2021)
[39] Gigante, G.; Vergara, C., On the stability of a loosely-coupled scheme based on a Robin interface condition for fluid-structure interaction, Comput. Math. Appl., 96, 109-119 (2021) · Zbl 1524.74121
[40] Griffith, B. E., Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions, Int. J. Numer. Methods Biomed. Eng., 28, 3, 317-345 (2012) · Zbl 1243.92017
[41] Gross, D., New quasi-monolithic method to solve dynamic fluid-structure interaction problems on membranes, (Textiles Composites and Inflatable Structures VII: Proceedings of the VII International Conference on Textile Composites and Inflatable Structures. Textiles Composites and Inflatable Structures VII: Proceedings of the VII International Conference on Textile Composites and Inflatable Structures, Barcelona, Spain, 19-21 October, 2015 (2015), CIMNE), 344-355
[42] Grotberg, J. B.; Jensen, O. E., Biofluid mechanics in flexible tubes, Annu. Rev. Fluid Mech., 36, 121-147 (2004) · Zbl 1081.76063
[43] Guerciotti, B.; Vergara, C.; Ippolito, S.; Quarteroni, A.; Antona, C.; Scrofani, R., A computational fluid-structure interaction analysis of coronary y-grafts, Med. Eng. Phys., 47, 117-127 (2017)
[44] Guidoboni, G.; Glowinski, R.; Cavallini, N.; Canic, S., Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow, J. Comput. Phys., 228, 18, 6916-6937 (2009) · Zbl 1261.76056
[45] Harlow, F. H.; Welch, J. E., Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, 8, 12, 2182-2189 (1965) · Zbl 1180.76043
[46] de Hart, J.; Peters, G. W.M.; Schreurs, P. J.G.; Baaijens, F. P.T., A two-dimensional fluid-structure interaction model of the aortic value, J. Biomech., 33, 9, 1079-1088 (2000)
[47] Heil, M.; Hazel, A. L.; Boyle, J., Solvers for large-displacement fluid-structure interaction problems: segregated versus monolithic approaches, Comput. Mech., 43, 1, 91-101 (2008) · Zbl 1309.76126
[48] Hofer, M.; Rappitsch, G.; Perktold, K.; Trubel, W.; Schima, H., Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia, J. Biomech., 29, 10, 1297-1308 (1996)
[49] Hosseini Zahraei, S. M.; Veldman, A. E.P.; Wellens, P. R.; Akkerman, I.; Huijsmans, R. H.M., The role of a structural mode shape-based interaction law to suppress added-mass instabilities in partitioned strongly-coupled elastic structure-fluid systems, (Proc. 36th International Conf. Ocean, Offshore and Arctic Engineering. Proc. 36th International Conf. Ocean, Offshore and Arctic Engineering, Trondheim, Norway (June 2017)), 25-30, Paper OMAE2017-62075
[50] Hou, G.; Wang, J.; Layton, A., Numerical methods for fluid-structure interaction – a review, Commun. Comput. Phys., 12, 2, 337-377 (2012) · Zbl 1373.76001
[51] Houwink, R.; Veldman, A. E.P., Steady and unsteady separated flow computations for transonic airfoils, (17th Fluid Dynamics, Plasma Dynamics, and Lasers Conference (1984)), AIAA paper 84-1618
[52] Kleefsman, K. M.T.; Fekken, G.; Veldman, A. E.P.; Iwanowski, B.; Buchner, B., A volume-of-fluid based simulation method for wave impact problems, J. Comput. Phys., 206, 363-393 (2005) · Zbl 1087.76539
[53] Kleinstreuer, C.; Zhang, Z., Airflow and particle transport in the human respiratory system, Annu. Rev. Fluid Mech., 42, 301-334 (2010) · Zbl 1213.76264
[54] Ku, D. N., Blood flow in arteries, Annu. Rev. Fluid Mech., 29, 1, 399-434 (1997)
[55] Kübler, R.; Schiehlen, W., Two methods of simulator coupling, Math. Comput. Model. Dyn. Syst., 6, 2, 93-113 (2000) · Zbl 0962.65107
[56] Küttler, U.; Gee, M.; Förster, Ch.; Comerford, A.; Wall, W. A., Coupling strategies for biomedical fluid-structure interaction problems, Int. J. Numer. Methods Biomed. Eng., 26, 3-4, 305-321 (2010) · Zbl 1183.92008
[57] Küttler, U.; Wall, W. A., Fixed-point fluid-structure interaction solvers with dynamic relaxation, Comput. Mech., 43, 1, 61-72 (2008) · Zbl 1236.74284
[58] Kuznetsov, N.; Kulczycki, T.; Kwaśnicki, M.; Nazarov, A.; Poborchi, S.; Polterovich, I.; j Siudeja, B., The legacy of Vladimir Andreevich Steklov, Not. Am. Math. Soc., 61, 1, 190 (2014) · Zbl 1322.01050
[59] Lacour, C.; Maday, Y., Two different approaches for matching nonconforming grids: the mortar element method and the FETI method, BIT Numer. Math., 37, 3, 720-738 (1997) · Zbl 0890.65111
[60] Lagerstrom, P. A., Solutions of the Navier-Stokes equation at large Reynolds number, SIAM J. Appl. Math., 28, 1, 202-214 (1975) · Zbl 0315.76013
[61] Lambert, J. D., Numerical Methods for Ordinary Differential Systems (1991), Wiley · Zbl 0745.65049
[62] Laskey, W. K.; Parker, H. G.; Ferrari, V. A.; Kussmaul, W. G.; Noordergraaf, A., Estimation of total systemic arterial compliance in humans, J. Appl. Physiol., 69, 1, 112-119 (1990)
[63] Le, T. B.; Sotiropoulos, F., Fluid-structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle, J. Comput. Phys., 244, 41-62 (2013) · Zbl 1377.76045
[64] Lock, R. C.; Williams, B. R., Viscous-inviscid interactions in external aerodynamics, Prog. Aerosp. Sci., 24, 51-171 (1987) · Zbl 0642.76075
[65] Loots, G. E., Fluid-Structure Interaction in Hemodynamics (2003), University of Groningen: University of Groningen The Netherlands, PhD thesis
[66] Loots, G. E.; Hillen, B.; Veldman, A. E.P., The role of hemodynamics in the development of the outflow tract of the heart, J. Eng. Math., 45, 91-104 (2003) · Zbl 1112.76516
[67] Luo, H.; Mittal, R.; Zheng, X.; Bielamowicz, S. A.; Walsh, R. J.; Hahn, J. K., An immersed-boundary method for flow-structure interaction in biological systems with application to phonation, J. Comput. Phys., 227, 22, 9303-9332 (2008) · Zbl 1148.74048
[68] Maday, Y.; Magoules, F., Absorbing interface conditions for domain decomposition methods: a general presentation, Comput. Methods Appl. Mech. Eng., 195, 29-32, 3880-3900 (2006) · Zbl 1168.65423
[69] Marom, G., Numerical methods for fluid-structure interaction models of aortic valves, Arch. Comput. Methods Eng., 22, 4, 595-620 (2015) · Zbl 1348.74099
[70] Maurits, N. M.; Loots, G. E.; Veldman, A. E.P., The influence of vessel wall elasticity and peripheral resistance on the flow wave form in the carotid artery: a CFD model compared to in-vivo ultrasound measurements, J. Biomech., 40, 427-436 (2007)
[71] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 239-261 (2005) · Zbl 1117.76049
[72] Moghadam, M. E.; Vignon-Clementel, I. E.; Figliola, R.; Marsden, A. L., And modeling of congenital hearts alliance (Mocha) investigators. A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations, J. Comput. Phys., 244, 63-79 (2013) · Zbl 1377.76041
[73] Munk, M. M., Elements of the Wing Section Theory and of the Wing Theory (1924), US Government Printing Office, NACA Rep. No. 191
[74] Naseri, A.; Lehmkuhl, O.; Gonzalez, I.; Bartrons, E.; Pérez-Segarra, C. D.; Oliva, A., A semi-implicit coupling technique for fluid-structure interaction problems with strong added-mass effect, J. Fluids Struct., 80, 94-112 (2018)
[75] Newman, J. N., Marine Hydrodynamics (1977), MIT Press
[76] Nobile, F.; Vergara, C., An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions, SIAM J. Sci. Comput., 30, 2, 731-763 (2008) · Zbl 1168.74038
[77] Nobile, F.; Vergara, C., Partitioned algorithms for fluid-structure interaction problems in haemodynamics, Milan J. Math., 80, 2, 443-467 (2012) · Zbl 1344.76099
[78] Noordergraaf, A.; Verdouw, P. D.; Boom, H. B.K., The use of an analog computer in a circulation model, Prog. Cardiovasc. Dis., 5, 5, 419-439 (1963)
[79] Olansen, J. B.; Clark, J. W.; Khoury, D.; Ghorbel, F.; Bidani, A., A closed-loop model of the canine cardiovascular system that includes ventricular interaction, Comput. Biomed. Res., 33, 4, 260-295 (2000)
[80] Olufsen, M. S.; Nadim, A., On deriving lumped models for blood flow and pressure in the systemic arteries, Math. Biosci. Eng., 1, 61-80 (2004) · Zbl 1136.76720
[81] Park, K. C.; Felippa, Carlos A., Partitioned analysis of coupled systems, (Belytschko, Ted; Hughes, Thomas J. R., Computational Methods for Transient Analysis (1983), Elsevier Science Publishers: Elsevier Science Publishers Amsterdam), 157-219, chapter 3 · Zbl 0546.73063
[82] Perktold, K.; Resch, M.; Florian, H., Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model, J. Biomech. Eng., 113, 4, 464-475 (1991)
[83] Perktold, K.; Resch, M.; Peter, R. O., Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation, J. Biomech., 24, 6, 409-420 (1991)
[84] Perktold, K.; Thurner, E.; Kenner, Th., Flow and stress characteristics in rigid walled and compliant carotid artery bifurcation models, Med. Biol. Eng. Comput., 32, 1, 19-26 (1994)
[85] Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 220-252 (1977) · Zbl 0403.76100
[86] Piperno, S., Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2d inviscid aeroelastic simulations, Int. J. Numer. Methods Fluids, 25, 10, 1207-1226 (1997) · Zbl 0910.76065
[87] Quarteroni, A.; Tuveri, M.; Veneziani, A., Computational vascular fluid dynamics: problems, models and methods, Comput. Vis. Sci., 2, 4, 163-197 (2000) · Zbl 1096.76042
[88] Quarteroni, A.; Veneziani, A., Analysis of a geometrical multiscale model based on the coupling of ODE and PDE for blood flow simulations, Multiscale Model. Simul., 1, 2, 173-195 (2003) · Zbl 1060.35003
[89] G. Rozema, Quasi-Simultaneous Coupling Methods for Computational Hemodynamics, PhD thesis, University of Groningen, in preparation. · Zbl 1245.92056
[90] Smith, B. W., Minimal Haemodynamic Modelling of the Heart & Circulation for Clinical Application (2004), University of Canterbury, PhD thesis
[91] Stefanica, D., A numerical study of FETI algorithms for mortar finite element methods, SIAM J. Sci. Comput., 23, 4, 1135-1160 (2001) · Zbl 0999.65127
[92] Stokes, G. G., On the Effect of the Internal Friction of Fluids on the Motion of Pendulums, Transactions of the Cambridge Philosophical Society, vol. IX:8 (1851)
[93] Toselli, A.; Widlund, O., Domain Decomposition Methods - Algorithms and Theory, vol. 34 (2006), Springer Science & Business Media
[94] Varga, R. S., Iterative Analysis (1962), Springer
[95] Veldman, A. E.P., A numerical method for the calculation of laminar incompressible boundary layers with strong viscous-inviscid interaction (1979), National Aerospace Laboratory, Technical Report NLR TR 79023
[96] Veldman, A. E.P., Boundary layers with strong interaction: from asymptotic theory to calculation method, (Miller, J. J.H., Proceedings BAIL 1 Conference on Boundary and Interior Layers (1980), Boole Press: Boole Press Dublin), 149-163 · Zbl 0455.76035
[97] Veldman, A. E.P., New, quasi-simultaneous method to calculate interacting boundary layers, AIAA J., 19, 79-85 (1981) · Zbl 0451.76031
[98] Veldman, A. E.P., A numerical view on strong viscous-inviscid interaction, (Habashi, W. G., Computational Methods in Viscous Flows (1984), Pineridge Press), 343-363 · Zbl 0583.76040
[99] Veldman, A. E.P., Matched asymptotic expansions and the numerical treatment of viscous-inviscid interaction, J. Eng. Math., 39, 189-206 (2001) · Zbl 0987.76015
[100] Veldman, A. E.P., A simple interaction law for viscous-inviscid interaction, J. Eng. Math., 65, 367-383 (2009) · Zbl 1180.76051
[101] Veldman, A. E.P., Entrainment and boundary-layer separation: a modeling history, J. Eng. Math., 107, 1, 5-17 (2017) · Zbl 1388.76069
[102] Veldman, A. E.P., Supraconservative finite-volume methods for the Euler equations of subsonic compressible flow, SIAM Rev., 63, 756-779 (2021) · Zbl 1477.65147
[103] Veldman, A. E.P.; Coenen, E. G.M., Interaction laws in viscous-inviscid coupling, (Domain Decomposition Methods in Science and Engineering (2005), Springer), 225-232 · Zbl 1152.76368
[104] Veldman, A. E.P.; Gerrits, J.; Luppes, R.; Helder, J.; Vreeburg, J. P.B., The numerical simulation of liquid sloshing on board spacecraft, J. Comput. Phys., 224, 1, 82-99 (2007) · Zbl 1261.76006
[105] Veldman, A. E.P.; Seubers, H.; Hosseini, M.; Chang, X.; Wellens, P. R.; van der Plas, P.; Helder, J., Computational methods for moving and deforming objects in extreme waves, (38th International Conference on Ocean, Offshore and Arctic Engineering OMAE2019. 38th International Conference on Ocean, Offshore and Arctic Engineering OMAE2019, Glasgow, Scotland, 9-14 June (2019)), Paper OMAE2019-96321
[106] Veldman, A. E.P.; Seubers, H.; van der Plas, P.; Helder, J., Accelerated free-surface flow simulations with interactively moving bodies, (MARINE VII: Proceedings of the VII International Conference on Computational Methods in Marine Engineering (2017), CIMNE), 604-615
[107] Veldman, A. E.P.; Seubers, H.; van der Plas, P.; Hosseini Zahraei, S. M.; Wellens, P. R., Preventing the added mass instability in fluid-solid interaction for offshore applications, (Proceedings of the 37th International Conference on Ocean, Offshore and Arctic Engineering OMAE2018. Proceedings of the 37th International Conference on Ocean, Offshore and Arctic Engineering OMAE2018, Madrid, Spain, 17-22 June (2018)), 17-22, Paper OMAE2018-77308
[108] Verstappen, R. W.C. P.; Veldman, A. E.P., Symmetry-preserving discretization of turbulent flow, J. Comput. Phys., 187, 343-368 (2003) · Zbl 1062.76542
[109] Vierendeels, J.; Lanoye, L.; Degroote, J.; Verdonck, P., Implicit coupling of partitioned fluid-structure interaction problems with reduced order models, Comput. Struct., 85, 11-14, 970-976 (2007)
[110] Von Mises, R., Theory of Flight (1959), Dover Publications
[111] Wehausen, J. V., The motion of floating bodies, Annu. Rev. Fluid Mech., 3, 1, 237-268 (1971) · Zbl 0283.76014
[112] Wemmenhove, R.; Luppes, R.; Veldman, A. E.P.; Bunnik, T., Numerical simulation of hydrodynamic wave loading by a compressible two-phase flow method, Comput. Fluids, 114, 218-231 (2015) · Zbl 1390.86026
[113] Wu, Y.; Cai, X.-C., A fully implicit domain decomposition based ALE framework for three-dimensional fluid-structure interaction with application in blood flow computation, J. Comput. Phys., 258, 524-537 (2014) · Zbl 1349.76552
[114] Yang, Y.; Jäger, W.; Neuss-Radu, M.; Richter, T., Mathematical modeling and simulation of the evolution of plaques in blood vessels, J. Math. Biol., 72, 4, 973-996 (2016) · Zbl 1343.35190
[115] Yokoi, K.; Xiao, F.; Liu, H.; Fukasaku, K., Three-dimensional numerical simulation of flows with complex geometries in a regular Cartesian grid and its application to blood flow in cerebral artery with multiple aneurysms, J. Comput. Phys., 202, 1, 1-19 (2005) · Zbl 1061.76065
[116] Zhao, R., A model-based expert system for interpretation of hemodynamic data from ICU patients, Comput. Cardiol., 1996, 585-588 (1996)
[117] Zhao, S. Z.; Xu, X. Y.; Hughes, A. D.; Thom, S. A.; Stanton, A. V.; Ariff, B.; Long, Q., Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation, J. Biomech., 33, 8, 975-984 (2000)
[118] Zhao, X.; Liu, Y.; Ding, J.; Ren, X.; Bai, F.; Zhang, M.; Ma, L.; Wang, W.; Xie, J.; Qiao, A., Hemodynamic effects of the anastomoses in the modified Blalock-Taussig shunt: a numerical study using a 0D/3D coupling method, J. Mech. Med. Biol., 15, 01, Article 1550017 pp. (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.